CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3564-3571.DOI: 10.11949/0438-1157.20230304
• Energy and environmental engineering • Previous Articles Next Articles
Xin YANG(), Xiao PENG(), Kairu XUE, Mengwei SU, Yan WU
Received:
2023-03-28
Revised:
2023-06-26
Online:
2023-10-18
Published:
2023-08-25
Contact:
Xiao PENG
通讯作者:
彭啸
作者简介:
杨欣(1998—),女,硕士研究生,1540194146@qq.com
基金资助:
CLC Number:
Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE[J]. CIESC Journal, 2023, 74(8): 3564-3571.
杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571.
Add to citation manager EndNote|Ris|BibTeX
样品 | 比表面积/(m2/g) | 总孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|
NIP-TiO2 | 11.31 | 0.01942 | 6.869 |
MIP-(PHE)TiO2 | 67.75 | 0.08322 | 4.914 |
MIP-(TX-100)TiO2 | 63.53 | 0.06229 | 3.922 |
MIP-(TX-100+PHE)TiO2 | 69.61 | 0.07274 | 4.180 |
Table 1 Pore structure parameters of molecularly imprinted-TiO2 and NIP-TiO2
样品 | 比表面积/(m2/g) | 总孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|
NIP-TiO2 | 11.31 | 0.01942 | 6.869 |
MIP-(PHE)TiO2 | 67.75 | 0.08322 | 4.914 |
MIP-(TX-100)TiO2 | 63.53 | 0.06229 | 3.922 |
MIP-(TX-100+PHE)TiO2 | 69.61 | 0.07274 | 4.180 |
MIP-TiO2电极 | 准一级动力学 | 准二级动力学 | ||||
---|---|---|---|---|---|---|
qe/(mg/g) | K1/min-1 | R2 | qe/(mg/g) | K2/(mg/(g·min)) | R2 | |
MIP-(PHE)TiO2 | 0.1348 | 0.0220 | 0.7880 | 0.1605 | 0.1607 | 0.8445 |
MIP-(TX-100)TiO2 | 0.1918 | 0.0539 | 0.9405 | 0.2071 | 0.4950 | 0.9620 |
MIP-(TX-100+PHE)TiO2 | 0.1553 | 0.0431 | 0.8629 | 0.1737 | 0.3705 | 0.9141 |
Table 2 Kinetic parameters of photoelectrocatalytic degradation of TX-100 solubilized phenanthrene by MIP-TiO2 electrode
MIP-TiO2电极 | 准一级动力学 | 准二级动力学 | ||||
---|---|---|---|---|---|---|
qe/(mg/g) | K1/min-1 | R2 | qe/(mg/g) | K2/(mg/(g·min)) | R2 | |
MIP-(PHE)TiO2 | 0.1348 | 0.0220 | 0.7880 | 0.1605 | 0.1607 | 0.8445 |
MIP-(TX-100)TiO2 | 0.1918 | 0.0539 | 0.9405 | 0.2071 | 0.4950 | 0.9620 |
MIP-(TX-100+PHE)TiO2 | 0.1553 | 0.0431 | 0.8629 | 0.1737 | 0.3705 | 0.9141 |
1 | Lu X Y, Zhang T, Fang H P. Bacteria-mediated PAH degradation in soil and sediment[J]. Applied Microbiology and Biotechnology, 2011, 89(5): 1357-1371. |
2 | Jeffy B D, Chen E J, Gudas J M, et al. Disruption of cell cycle kinetics by benzo[a]pyrene: inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2[J]. Neoplasia, 2000, 2(5): 460-470. |
3 | 郑美林, 赵颖豪, 苗莉莉, 等. 多环芳烃污染土壤生物修复研究进展[J]. 生物工程学报, 2021, 37(10): 3535-3548. |
Zheng M L, Zhao Y H, Miao L L, et al. Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3535-3548. | |
4 | Gautam P, Bajagain R, Jeong S W. Combined effects of soil particle size with washing time and soil-to-water ratio on removal of total petroleum hydrocarbon from fuel contaminated soil[J]. Chemosphere, 2020, 250: 126206. |
5 | Gong Y Y, Zhao D Y, Wang Q D. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460. |
6 | Mangwani N, Kumari S, Das S. Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm[J]. Pedosphere, 2017, 27(3): 548-558. |
7 | Wu C, Li F, Yi S W, et al. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: advances and ecological risk assessment[J]. Journal of Environmental Management, 2021, 296: 113185. |
8 | Deng B L, Zhou X Q, Yang X J, et al. Removal of polychlorinated biphenyls and recycling of tween-80 in soil washing eluents[J]. Desalination and Water Treatment, 2017, 64: 109-117. |
9 | Ahn C K, Kim Y M, Woo S H, et al. Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon[J]. Chemosphere, 2007, 69(11): 1681-1688. |
10 | Gong X, Xu X Y, Gong Z Q, et al. Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process[J]. Environmental Science and Pollution Research, 2015, 22(16): 12001-12010. |
11 | Carboneras Contreras M B, Fourcade F, Assadi A, et al. Electro Fenton removal of clopyralid in soil washing effluents[J]. Chemosphere, 2019, 237: 124447. |
12 | Jamble S N, Ghoderao K P, Kale R B. Studies on growth mechanism and physical properties of hydrothermally synthesized CdS with novel hierarchical superstructures and their photocatalytic activity[J]. Journal of Physics and Chemistry of Solids, 2018, 114: 109-120. |
13 | Moreira F C, Boaventura R A R, Brillas E, et al. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. |
14 | Mamaghani A H, Haghighat F, Lee C S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art[J]. Applied Catalysis B: Environmental, 2017, 203: 247-269. |
15 | 应霞薇, 浮建军, 曾敏, 等.基于BiOCl-Fe2O3@TiO2介孔复合材料的光电化学合成氨性能研究[J]. 化学学报, 2022, 80(4): 503-509. |
Ying X W, Fu J J, Zeng M, et al. BiOCl-Fe2O3@TiO2 mesoporous composite for photoelectrochemical synthesis of ammonia[J]. Acta Chimica Sinica, 2022, 80(4): 503-509. | |
16 | 王思旋. 二氧化钛分子印迹光催化剂的制备和选择性光催化作用[D]. 武汉: 华中师范大学, 2013. |
Wang S X. The preparation and selective photocatalysis properties of molecular imprinted TiO2 [D]. Wuhan: Central China Normal University, 2013. | |
17 | 魏声培, 安娅, 秦好丽. 水杨酸分子印迹掺氮TiO2粉末的制备及在可见光下的选择性光催化研究[J]. 华南农业大学学报, 2016, 37(4): 134-140. |
Wei S P, An Y, Qin H L. Preparation of salicylic acid molecularly imprinted and N-doped TiO2 powders and their selective photocatalytic activity under visible light [J]. Journal of South China Agricultural University, 2016, 37(4): 134-140. | |
18 | Paz Y. Preferential photodegradation - why and how?[J]. Comptes Rendus Chimie, 2006, 9(5/6): 774-787. |
19 | 吴鹏飞, 朱雷, 汪恂, 等. 分子印迹TiO2光催化降解水杨酸有机废水研究[J]. 工业水处理, 2019, 39 (2): 26-29. |
Wu P F, Zhu L, Wang X, et al. Research on the photo-catalytic degradation of organic wastewater containing salicylic acid by molecularly imprinted TiO2 [J]. Industrial Water Treatment, 2019, 39 (2): 26-29. | |
20 | 张良晓. ZnO-MIP-TiO2光催化选择性降解尼泊金乙酯的实验研究[D]. 武汉: 武汉科技大学, 2021. |
Zhang L X. Experimental study on the photocatalytic selective degradation of ethyl paraben by ZnO-MIP-TiO2 [D]. Wuhan: Wuhan University of Science and Technology, 2021. | |
21 | 管杰, 孙玲娜, 徐琴, 等. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760. |
Guan J, Sun L N, Xu Q, et al. Synthesis and application of molecularly imprinted polymers based on titanium dioxide and its composites[J]. Progress in Chemistry, 2018, 30(11): 1749-1760. | |
22 | 赵谷雨. 磁性聚多巴胺分子印迹聚合物的制备及其吸附喹诺酮药物研究[D]. 舟山: 浙江海洋大学, 2022. |
Zhao G Y. Preparation of magnetic dopamine surface molecularly imprinted polymers for quinolones adsorption [D]. Zhoushan: Zhejiang Ocean University, 2022. | |
23 | 季金苟, 石朝辉, 郭静, 等. 混晶型纳米二氧化钛混悬液的制备及其光催化性能[J]. 材料导报, 2012, 26(14): 29-32. |
Ji J G, Shi C H, Guo J, et al. Preparation and photocatalysis of the nano-TiO2 mixed crystals suspension[J]. Materials Review, 2012, 26(14): 29-32. | |
24 | 朱晓东, 王娟, 喻强, 等. Zn掺杂混晶TiO2的制备及光催化性能研究[J].化工新型材料, 2021, 49(8): 136-139. |
Zhu X D, Wang J, Yu Q, et al. Preparation and photocatalytic property of Zn-doped mixed crystal TiO2 [J]. New Chemical Materials, 2021, 49(8): 136-139. | |
25 | Liu Y, Mu K S, Zhang Y Z, et al. Facile synthesis of a narrow-gap titanium dioxide anatase/rutile nanofiber film on titanium foil with high photocatalytic activity under sunlight[J]. International Journal of Hydrogen Energy, 2016, 41(24): 10327-10334. |
26 | Moosavi F, Lemarchand A, Bazin C, et al. Photocatalytic nanocomposite anatase-rutile TiO2 coating[J]. Applied Physics A, 2022, 128(11): 1-10. |
27 | 蒋彩云, 吴婷, 周海飞, 等.一种可温度与pH调控的分子印迹光催化材料的制备及其性能[J].化工进展, 2021, 40(1): 305-312. |
Jiang C Y, Wu T, Zhou H F, et al. Preparation and property of a molecular imprinted material with photocatalytic activity controlled by temperature and pH[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 305-312. | |
28 | Zhou X X, Lai C, Huang D L, et al. Preparation of water-compatible molecularly imprinted thiol-functionalized activated titanium dioxide: selective adsorption and efficient photodegradation of 2, 4-dinitrophenol in aqueous solution[J]. Journal of Hazardous Materials, 2018, 346: 113-123. |
29 | 王梦祺, 安娅, 田娟, 等. 分子印迹掺氮二氧化钛的选择性光催化行为及其动力学研究[J].化工新型材料, 2021, 49(3): 186-191. |
Wang M Q, An Y, Tian J, et al. Study on selective potocatalytic activity and kinetics of molecular imprinted N-doped TiO2 [J]. New Chemical Materials, 2021, 49(3): 186-191. | |
30 | Wang A J, Peng X, Shi N, et al. Study on the preparation of the hierarchical porous CX-TiO2 composites and their selective degradation of PHE solubilized in soil washing eluent[J]. Chemosphere, 2020, 260: 127588. |
31 | 颜昭, 朱雷, 汪恂. 分子印迹TiO2光催化降解水杨酸实验研究[J]. 水处理技术, 2019, 45(4): 83-87. |
Yan Z, Zhu L, Wang X. Photocatalytic degradation of salicylic acid by molecularly imprinted TiO2 [J]. Technology of Water Treatment, 2019, 45(4): 83-87. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[6] | Wenjie XU, Xianfeng JIA, Jitong WANG, Wenming QIAO, Licheng LING, Renping WANG, Zijian YU, Yinxu ZHANG. Preparation and properties of silicone/phenolic hybrid aerogel [J]. CIESC Journal, 2023, 74(8): 3572-3583. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[9] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||