CIESC Journal ›› 2024, Vol. 75 ›› Issue (1): 231-241.DOI: 10.11949/0438-1157.20231114
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaoyang LI1(
), Dong LI1(
), Minglei TAO1, Zhifu ZHOU1(
), Lingyi ZHANG1, Lizheng SU2, Tianning ZHANG2, Zhi LI2, Bin CHEN1
Received:2023-10-30
Revised:2023-12-20
Online:2024-03-11
Published:2024-01-25
Contact:
Dong LI, Zhifu ZHOU
李晓阳1(
), 李东1(
), 陶明磊1, 周致富1(
), 张灵怡1, 苏力争2, 张天宁2, 李智2, 陈斌1
通讯作者:
李东,周致富
作者简介:李晓阳(1999—),女,硕士研究生,joeng@stu.xjtu.edu.cn
基金资助:CLC Number:
Xiaoyang LI, Dong LI, Minglei TAO, Zhifu ZHOU, Lingyi ZHANG, Lizheng SU, Tianning ZHANG, Zhi LI, Bin CHEN. Experimental study on heat transfer characteristics of multi nozzle spray cooling surface[J]. CIESC Journal, 2024, 75(1): 231-241.
李晓阳, 李东, 陶明磊, 周致富, 张灵怡, 苏力争, 张天宁, 李智, 陈斌. 多喷嘴喷雾冷却表面传热特性实验研究[J]. 化工学报, 2024, 75(1): 231-241.
Add to citation manager EndNote|Ris|BibTeX
| 喷雾时间/ms | 制冷剂喷射质量/g | ||
|---|---|---|---|
| 0.6 MPa | 1.2 MPa | 1.9 MPa | |
| 30 | 0.242 | 0.410 | 0.537 |
| 50 | 0.403 | 0.684 | 0.895 |
| 70 | 0.564 | 0.957 | 1.253 |
Table 1 Refrigerant injection at different drive pressures and spray time
| 喷雾时间/ms | 制冷剂喷射质量/g | ||
|---|---|---|---|
| 0.6 MPa | 1.2 MPa | 1.9 MPa | |
| 30 | 0.242 | 0.410 | 0.537 |
| 50 | 0.403 | 0.684 | 0.895 |
| 70 | 0.564 | 0.957 | 1.253 |
| 项目 | 厚度z/mm | 热导率 | 密度 | 比热容 cp /(J/(kg·K)) |
|---|---|---|---|---|
| 紫铜 | 1 | 398 | 8930 | 386 |
| 人体皮肤 | 0.05 | 0.209 | 1000 | 3530 |
| 环氧树脂 | 5.0 | 0.841 | 1936.96 | 564.80 |
Table 2 Thermophysical properties of copper, human skin, and epoxy resin
| 项目 | 厚度z/mm | 热导率 | 密度 | 比热容 cp /(J/(kg·K)) |
|---|---|---|---|---|
| 紫铜 | 1 | 398 | 8930 | 386 |
| 人体皮肤 | 0.05 | 0.209 | 1000 | 3530 |
| 环氧树脂 | 5.0 | 0.841 | 1936.96 | 564.80 |
| 参数 | 最低温度/°C | 温差/°C | 冷却时间差/ms |
|---|---|---|---|
| 喷嘴孔径 | |||
| 0.2 mm | -32.5 | 16.6 | 1554 |
| 0.4 mm | -40.4 | 18.8 | 505 |
| 0.6 mm | -37.5 | 20.2 | 318 |
| 喷嘴高度 | |||
| 5 mm | -30.4 | 8.7 | 563 |
| 10 mm | -40.4 | 18.8 | 505 |
| 15 mm | -37.5 | 14.1 | 725 |
| 喷雾时间 | |||
| 30 ms | -37.4 | 17.0 | 437 |
| 50 ms | -40.4 | 18.8 | 505 |
| 70 ms | -38.8 | 14.0 | 567 |
| 喷雾压力 | |||
| 0.6 MPa | -36.4 | 16.1 | 513 |
| 1.2 MPa | -38.0 | 13.2 | 608 |
| 1.9 MPa | -40.4 | 18.8 | 505 |
| 喷嘴间距 | |||
| 8 mm | -36.6 | 7.7 | 437 |
| 11 mm | -40.6 | 25.3 | 1021 |
| 14 mm | -40.4 | 18.8 | 505 |
Table 3 Statistics of minimum temperature, surface temperature difference and effective cooling time of each measuring point on the substrate surface with different spray parameters
| 参数 | 最低温度/°C | 温差/°C | 冷却时间差/ms |
|---|---|---|---|
| 喷嘴孔径 | |||
| 0.2 mm | -32.5 | 16.6 | 1554 |
| 0.4 mm | -40.4 | 18.8 | 505 |
| 0.6 mm | -37.5 | 20.2 | 318 |
| 喷嘴高度 | |||
| 5 mm | -30.4 | 8.7 | 563 |
| 10 mm | -40.4 | 18.8 | 505 |
| 15 mm | -37.5 | 14.1 | 725 |
| 喷雾时间 | |||
| 30 ms | -37.4 | 17.0 | 437 |
| 50 ms | -40.4 | 18.8 | 505 |
| 70 ms | -38.8 | 14.0 | 567 |
| 喷雾压力 | |||
| 0.6 MPa | -36.4 | 16.1 | 513 |
| 1.2 MPa | -38.0 | 13.2 | 608 |
| 1.9 MPa | -40.4 | 18.8 | 505 |
| 喷嘴间距 | |||
| 8 mm | -36.6 | 7.7 | 437 |
| 11 mm | -40.6 | 25.3 | 1021 |
| 14 mm | -40.4 | 18.8 | 505 |
| 1 | Hsieh S S, Luo S Y. Droplet impact dynamics and transient heat transfer of a micro spray system for power electronics devices[J]. International Journal of Heat and Mass Transfer, 2016, 92: 190-205. |
| 2 | Bar-Cohen A, Maurer J, Felbinger J. DARPA's intra/interchip enhanced cooling (ICECool) program[C]//CS MANTECH Conference. 2013: 171-174. |
| 3 | Mudawar I. Assessment of high-heat-flux thermal management schemes[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(2): 122-141. |
| 4 | Chen R H, Chow L C, Navedo J E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 4033-4043. |
| 5 | Gao X, Li R. Effects of nozzle positioning on single-phase spray cooling[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1247-1257. |
| 6 | Zhang W W, Li Y Y, Long W J, et al. Enhancement mechanism of high alcohol surfactant on spray cooling: experimental study[J]. International Journal of Heat and Mass Transfer, 2018, 126: 363-376. |
| 7 | Tilton D E, Pais M R, Chow L. High power density spray cooling[R]. Wright Laboratory: New Haven, OH, USA, 1989. |
| 8 | Rini D P, Chen R H, Chow L C. Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling[J]. Journal of Heat Transfer, 2002, 124(1): 63-72. |
| 9 | Chen H, Cheng W L, Peng Y H, et al. Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling[J]. International Journal of Heat and Mass Transfer, 2016, 103: 57-65. |
| 10 | Kandasamy R, Ho J Y, Liu P F, et al. Two-phase spray cooling for high ambient temperature data centers: evaluation of system performance[J]. Applied Energy, 2022, 305: 117816. |
| 11 | Xue R, Lin X Y, Ruan Y, et al. Cooling performance of multi-nozzle spray with liquid nitrogen[J]. Cryogenics, 2022, 121: 103389. |
| 12 | Bandaru S V R, Villanueva W, Konovalenko A, et al. Upward-facing multi-nozzle spray cooling experiments for external cooling of reactor pressure vessels[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120516. |
| 13 | Aguilar G, Choi B, Broekgaarden M, et al. An overview of three promising mechanical, optical, and biochemical engineering approaches to improve selective photothermolysis of refractory port wine stains[J]. Annals of Biomedical Engineering, 2012, 40(2): 486-506. |
| 14 | Nelson J S, Milner T E, Anvari B, et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation[J]. Archives of Dermatology, 1995, 131(6): 695-700. |
| 15 | Nelson J S, Milner T E, Anvari B, et al. Dynamic epidermal cooling in conjunction with laser‐induced photothermolysis of port wine stain blood vessels[J]. Lasers in Surgery and Medicine, 1996, 19(2): 224-229. |
| 16 | Aguilar G, Wang G X, Nelson J S. Dynamic behavior of cryogen spray cooling: effects of spurt duration and spray distance[J]. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 2003, 32(2): 152-159. |
| 17 | Aguilar G, Wang G X, Nelson J S. Effect of spurt duration on the heat transfer dynamics during cryogen spray cooling[J]. Physics in Medicine and Biology, 2003, 48(14): 2169-2181. |
| 18 | Zhou Z F, Wang R, Chen B, et al. Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures[J]. Applied Thermal Engineering, 2016, 102: 813-821. |
| 19 | Zhou Z F, Chen B, Wang R, et al. Coupling effect of hypobaric pressure and spray distance on heat transfer dynamics of R134a pulsed flashing spray cooling[J]. Experimental Thermal and Fluid Science, 2016, 70: 96-104. |
| 20 | Sarmadian A, Dunne J F, Jose J T, et al. Correlation models of critical heat flux and associated temperature for spray evaporative cooling of vibrating surfaces[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121735. |
| 21 | Sarmadian A, Thalackottore Jose J, Dunne J F, et al. The effect of key parameter changes on the critical heat flux of spray evaporatively-cooled vibrating surfaces using a single misting nozzle[J]. Applied Thermal Engineering, 2022, 213: 118815. |
| 22 | Tian J M, Chen B, Zhou Z F. Parametric effect investigation on surface heat transfer performances during cryogen spray cooling[J]. Applied Thermal Engineering, 2018, 143: 767-776. |
| 23 | Tian J M, Chen B, Li D. Light transmittance dynamics and spectral absorption characteristics during auxiliary cryogen spray cooling in laser dermatology[J]. Lasers in Medical Science, 2022, 37(3): 2079-2086. |
| 24 | Li B F, Wang J F, Tian J M, et al. Transient cooling performance of R134a flash-evaporation spray enhanced by cold air jet: a novel heat transfer enhancement method in laser dermatology[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123468. |
| 25 | Franco W, Liu J E, Wang G X, et al. Radial and temporal variations in surface heat transfer during cryogen spray cooling[J]. Physics in Medicine and Biology, 2005, 50(2): 387-397. |
| 26 | 王锐, 陈斌, 王嘉丰, 等. R1234yf瞬态喷雾冷却及过热度影响的实验研究[J]. 化工学报, 2018, 69(2): 595-601. |
| Wang R, Chen B, Wang J F, et al. Experimental research of R1234yf transient spray cooling and influence of cryogen superheat degree[J]. CIESC Journal, 2018, 69(2): 595-601. | |
| 27 | Aguilar G, Majaron B, Karapetian E, et al. Experimental study of cryogen spray properties for application in dermatologic laser surgery[J]. IEEE Transactions on Biomedical Engineering, 2003, 50(7): 863-869. |
| [1] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
| [2] | Jun LI, Shihua LI, Zhigao SUN, Shibo SONG. Study on effect of ultrasound for immersed spray cooling in non-boiling regime [J]. CIESC Journal, 2022, 73(4): 1566-1574. |
| [3] | Hongbo ZHAN, Wenyuan ZHENG, Tao WEN, Dalin ZHANG. Experimental investigation on condensation heat transfer of refrigerant R134a in micro-scale channel [J]. CIESC Journal, 2020, 71(S1): 83-89. |
| [4] | Nianyong ZHOU, Muhao XU, Hao FENG, Feng DUAN, Qingrong WANG, Haifei CHEN, Qiang GUO. Study on transient heat transfer process of spray cooling with closed-loop [J]. CIESC Journal, 2020, 71(3): 1018-1025. |
| [5] | Hong LIU, Yang HE, Chang CAI, Jiuliang GAO, Hongchao YIN. Influence of ethanol and n-butanol additives on spray cooling [J]. CIESC Journal, 2019, 70(1): 65-71. |
| [6] | WANG Qin, LIU Yilun, LU Wei, WANG Shikuan, HE Wei, HAO Nan, ZHANG Shaozhi. Experiment on transport performance of bubble pumps with R134a/R23-DMF solutions [J]. CIESC Journal, 2018, 69(S2): 116-122. |
| [7] | MENG Zhaofeng, ZHANG Hua, QIN Yanbin, YANG Meng, LIANG Hao. Experimental study on R1234yf/R134a mixture as alternative to R134a in automobile air conditioner [J]. CIESC Journal, 2018, 69(6): 2396-2403. |
| [8] | QI Hang, ZHANG Wei, GONG Liang. Liquid film flow and heat transfer model under spray impact [J]. CIESC Journal, 2018, 69(5): 2014-2022. |
| [9] | JIN Xu, YU Yue, CHEN Zuozhou, DANG Chaobin, LIU Zhongyan. Effects of supersonic and subsonic nozzles on performance of adjustable ejectors [J]. CIESC Journal, 2018, 69(4): 1405-1411. |
| [10] | XIN Hui, CHEN Bin, ZHOU Zhifu, TIAN Jiameng. Numerical study of multi-pulsed cryogen spray cooling for laser lipolysis [J]. CIESC Journal, 2018, 69(12): 4966-4971. |
| [11] | CHEN Bin, ZHOU Zhifu, XIN Hui. Cryogen transient flashing spray cooling: state of art [J]. CIESC Journal, 2018, 69(1): 57-68. |
| [12] | TAN Yingying, WANG Lin, BAI Depo, YAN Xiaona. Performance of R23/R134a auto-cascade refrigeration cycle with one-step dephlegmation and two-step dephlegmation [J]. CIESC Journal, 2016, 67(S2): 107-112. |
| [13] | QIU Jinyou, ZHANG Hua, YU Xiaoming, WANG Xi, WU Yinlong. Flow boiling heat transfer characteristic of refrigerant R1234ze(E) in horizontal circular tube [J]. CIESC Journal, 2016, 67(6): 2255-2262. |
| [14] | YANG Tao, ZHOU Zhifu, CHEN Bin, ZHAO Xi, WANG Guoxiang. Influence of temperature measurement method on surface heat transfer during spray cooling [J]. CIESC Journal, 2016, 67(11): 4558-4565. |
| [15] | TIAN Jiameng, CHEN Bin, LI Dong, ZHOU Zhifu. Surface heat transfer characteristics during transient cryogen spray cooling [J]. CIESC Journal, 2016, 67(10): 4064-4071. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||