CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1118-1136.DOI: 10.11949/0438-1157.20231396
• Reviews and monographs • Previous Articles Next Articles
Lisheng WU(), Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU()
Received:
2023-12-29
Revised:
2024-02-02
Online:
2024-06-06
Published:
2024-04-25
Contact:
Yinning ZHOU
通讯作者:
周寅宁
作者简介:
吴立盛(2000—),男,硕士研究生,15160310156@sjtu.edu.cn
基金资助:
CLC Number:
Lisheng WU, Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU. Progress in dynamically crosslinked polyolefins derived from ring-opening metathesis polymerization[J]. CIESC Journal, 2024, 75(4): 1118-1136.
吴立盛, 刘杰, 王添添, 罗正鸿, 周寅宁. 开环易位烯烃聚合物的动态交联改性研究进展[J]. 化工学报, 2024, 75(4): 1118-1136.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Synthetic pathways and properties of polyolefins dynamically crosslinked by hydrogen bonded[20, 62-63]: (a) six-point and three-point hydrogen bonded complexes; (b) reversible energy dissipative rupture of sacrificial hydrogen bonds in a G2-mediated self-healing olefin-containing network; (c) synthesis of the amid-containing CO network (ACON) and hydrogen-bond-blocked control network (BACON); (d) ABA type block cyclic olefin copolymer (A block: 2-ureido-4[1H]-pyrimidinone (UPy)-functionalized norbornene homopolymer; B block: 2-ureido-4[1H]-pyrimidinone (UPy)-functionalized norbornene random copolymer); (e) schematic graph for energy dissipative rupture of polymer network
Fig.3 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by ionic interaction[67-69]: (a) imidazolium-based norbornene copolymer with different counterions; (b) photographs showing the self-healing properties of samples and its mechanism under the testing process; (c) chemical structures of gradient copolymers and the mechanism for elastic response; (d) synthetic route of the imidazolium-based norbornene copolymers with different spacer and tail lengths
Fig.4 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by host-guest interaction[70]: (a) supramolecular polymers; (b) covalent polymers; (c) synergistic covalent and supramolecular polymers; (d) comparison of mechanical and dynamic properties of three polymers above
Fig.5 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by dual-molecular interaction[72]: (a) synthetic route of dual-cross-linked polymer; (b) schematic graph of dense UPy region limited deformation, while UPy dimers in sparse regions with weak ionic interaction can act as sacrificial bonds for energy dissipation; (c) schematic illustration of the NIR triggered healing process
Fig.6 Synthetic pathways and properties of polyolefin dynamically crosslinked by olefin metathesis[73]: (a) schematic of the depolymerization-repolymerization cycle of network polymers based on ROMP; (b) depolymerization temperatures of copolymers depending on the ratios of two comonomers; (c) the storage modulus of sample which were first initiated at 55℃ and cycled between 25℃ and 55℃
Fig.7 Synthetic pathways and properties of polyolefins dynamically crosslinked by boronic ester[74-75]: (a) tuning neighboring group to control the exchange kinetics of boronic ester; (b) dynamic exchange of boronic ester crosslinkers affords olefin polymer; (c) synthesis of a DCNA based on the PE backbone; (d) creep tests of PE with different mass fractions of PE-AB; (e) schematic representation of dynamic covalent networks with reprocessability
Fig.8 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by ester bond and siloxane bond[22, 76]: (a) synthetic scheme for generating dynamic bottlebrush polymer networks that undergo transesterification; (b) preparation of polydicyclopentadiene (pDCPD) with bifunctional silyl ether; (c) stress relaxation curves of EtSi7 and pDCPD copolymer cured with and without octanoic acid; (d) stress-relaxation curves of iPrSi7 and pDCPD copolymer cured with and without octanoic acid; (e) Arrhenius plots of stress relaxation for these two samples
Fig.9 Synthetic pathways and properties of polyolefin dynamically crosslinked by vinylogous urethane bond[77]: (a) telechelic polymers by ROMP of COE in the presence of CTA bearing acetoacetate groups; (b) synthesis of dynamic crosslinked network using telechelic polymer and TREN
Fig.10 Synthetic pathways and properties of cyclic olefin polymer dynamically crosslinked by dual-dynamic covalent bonds[78]: (a) synthetic scheme for the network crosslinked by dual-dynamic covalent bonds; (b) schematic illustration of the two independently controllable topological transformations; (c) transesterification between hydroxyl groups and polycaprolactone side chains; (d) DSC curves for the isomerized materials obtained with different UV irradiation time; (e) stress-strain curves of the isomerized materials
1 | Bielawski C W, Grubbs R H. Living ring-opening metathesis polymerization[J]. Progress in Polymer Science, 2007, 32(1): 1-29. |
2 | Slugovc C. The ring opening metathesis polymerisation toolbox[J]. Macromolecular Rapid Communications, 2004, 25(14): 1283-1297. |
3 | So L C, Faucher S, Zhu S P. Synthesis of low molecular weight polyethylenes and polyethylene mimics with controlled chain structures[J]. Progress in Polymer Science, 2014, 39(6): 1196-1234. |
4 | Truett W L, Johnson D R, Robinson I M, et al. Polynorbornene by coordination polymerization[J]. Journal of the American Chemical Society, 1960, 82(9): 2337-2340. |
5 | Jean-Louis Hérisson P, Chauvin Y. Catalyse de transformation des oléfines par les complexes du tungstène. Ⅱ. Télomérisation des oléfines cycliques en présence d'oléfines acycliques[J]. Die Makromolekulare Chemie, 1971, 141(1): 161-176. |
6 | Schrock R. Recent advances in olefin metathesis by molybdenum and tungsten imido alkylidene complexes[J]. Journal of Molecular Catalysis A: Chemical, 2004, 213(1): 21-30. |
7 | Choi T L, Grubbs R H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst[J]. Angewandte Chemie International Edition, 2003, 42(15): 1743-1746. |
8 | Jeong H, Kozera D J, Schrock R R, et al. Z-selective ring-opening metathesis polymerization of 3-substituted cyclooctenes by monoaryloxide pyrrolide imido alkylidene (MAP) catalysts of molybdenum and tungsten[J]. Organometallics, 2013, 32(17): 4843-4850. |
9 | Rosebrugh L E, Marx V M, Keitz B K, et al. Synthesis of highly cis, syndiotactic polymers via ring-opening metathesis polymerization using ruthenium metathesis catalysts[J]. Journal of the American Chemical Society, 2013, 135(27): 10032-10035. |
10 | Schrock R R. Synthesis of stereoregular polymers through ring-opening metathesis polymerization[J]. Accounts of Chemical Research, 2014, 47(8): 2457-2466. |
11 | Yasir M, Liu P, Tennie I K, et al. Catalytic living ring-opening metathesis polymerization with Grubbs' second- and third-generation catalysts[J]. Nature Chemistry, 2019, 11: 488-494. |
12 | Hyatt M G, Walsh D J, Lord R L, et al. Mechanistic and kinetic studies of the ring opening metathesis polymerization of norbornenyl monomers by a Grubbs third generation catalyst[J]. Journal of the American Chemical Society, 2019, 141(44): 17918-17925. |
13 | Blosch S E, Alaboalirat M, Eades C B, et al. Solvent effects in grafting-through ring-opening metathesis polymerization[J]. Macromolecules, 2022, 55(9): 3522-3532. |
14 | Wang T T, Shi Y J, Li S, et al. Unraveling the compounded interplay of weakly and strongly coordinating ligands in G3-catalyzed living metathesis polymerization: toward well-defined polynorbornene at ambient temperature[J]. Macromolecules, 2023, 56(18): 7379-7388. |
15 | 姜啟亮, 陈琦, 姜付本, 等. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 材料导报, 2018, 32(7): 1165-1173. |
Jiang Q L, Chen Q, Jiang F B, et al. A review of the ring-opening metathesis polymerization involving norbornene or its derivatives[J]. Materials Review, 2018, 32(7): 1165-1173. | |
16 | Morita T, Maughon B R, Bielawski C W, et al. A ring-opening metathesis polymerization (ROMP) approach to carboxyl- and amino-terminated telechelic poly(butadiene)s[J]. Macromolecules, 2000, 33(17): 6621-6623. |
17 | Pitet L M, Hillmyer M A. Carboxy-telechelic polyolefins by ROMP using maleic acid as a chain transfer agent[J]. Macromolecules, 2011, 44(7): 2378-2381. |
18 | Nomura K, Abdellatif M M. Precise synthesis of polymers containing functional end groups by living ring-opening metathesis polymerization (ROMP): efficient tools for synthesis of block/graft copolymers[J]. Polymer, 2010, 51(9): 1861-1881. |
19 | Yang J X, Long Y Y, Pan L, et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ring-opening metathesis copolymerization of well-designed bulky monomers[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12445-12455. |
20 | Yoshida S, Ejima H, Yoshie N. Tough elastomers with superior self-recoverability induced by bioinspired multiphase design[J]. Advanced Functional Materials, 2017, 27(30): 1701670. |
21 | Allen M J, Wangkanont K, Raines R T, et al. ROMP from ROMP: a new approach to graft copolymer synthesis[J]. Macromolecules, 2009, 42(12): 4023-4027. |
22 | Self J L, Sample C S, Levi A E, et al. Dynamic bottlebrush polymer networks: self-healing in super-soft materials[J]. Journal of the American Chemical Society, 2020, 142(16): 7567-7573. |
23 | Varlas S, Hua Z, Jones J R, et al. Complementary nucleobase interactions drive the hierarchical self-assembly of core–shell bottlebrush block copolymers toward cylindrical supramolecules[J]. Macromolecules, 2020, 53(22): 9747-9757. |
24 | Fan J K, Ren N, Zhang C Y, et al. Synthesis of hyperbranched polyolefin with well-defined terminal functional group[J]. Polymer, 2022, 242: 124571. |
25 | Rylski A K, Cater H L, Mason K S, et al. Polymeric multimaterials by photochemical patterning of crystallinity[J]. Science, 2022, 378(6616): 211-215. |
26 | Zhao Y C, Rettner E M, Harry K L, et al. Chemically recyclable polyolefin-like multiblock polymers[J]. Science, 2023, 382(6668): 310-314. |
27 | Shim J S, Browne A W, Ahn C H. An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer[J]. Biomedical Microdevices, 2010, 12(5): 949-957. |
28 | Baek C, Kim J, Lee Y, et al. Fabrication and evaluation of cyclic olefin copolymer based implantable neural electrode[J]. IEEE Transactions on Bio-Medical Engineering, 2020, 67(9): 2542-2551. |
29 | Yamazaki M. Industrialization and application development of cyclo-olefin polymer[J]. Journal of Molecular Catalysis A: Chemical, 2004, 213(1): 81-87. |
30 | Zhang R, Madhavi V, Shaffer T D, et al. Cyclic olefin copolymers (COC)—excellent glass formers with low dynamic fragility[J]. Macromolecular Chemistry and Physics, 2022, 223(15): 2200065. |
31 | Zhao Y H, Zhang Y X, Cui L, et al. Cyclic olefin terpolymers with high refractive index and high optical transparency[J]. ACS Macro Letters, 2023, 12(3): 395-400. |
32 | Liu S C, Fan Y Q, Gao K X, et al. Fabrication of cyclo-olefin polymer-based microfluidic devices using CO2 laser ablation[J]. Materials Research Express, 2018, 5(9): 095305. |
33 | Abdulrahman A, Waqas W, Nahla A, et al. A review of cyclic olefin copolymer applications in microfluidics and microdevices[J]. Macromolecular Materials and Engineering, 2022, 307(8): 2200053. |
34 | Stagnaro P, Mancini G, Piccinini A, et al. Novel ethylene/norbornene copolymers as nonreleasing antioxidants for food-contact polyolefinic materials[J]. Journal of Polymer Science B Polymer Physics, 2013, 51(13): 1007-1016. |
35 | Losio S, Tritto I, Boggioni L, et al. Fully consistent terpolymeric non-releasing antioxidant additives for long lasting polyolefin packaging materials[J]. Polymer Degradation and Stability, 2017, 144: 167-175. |
36 | Janjua S, Hussain Z, Khan Z, et al. Biopolymer blended films of poly(butylene succinate)/cyclic olefin copolymer with enhanced mechanical strength for packaging applications[J]. Journal of Applied Polymer Science, 2021, 138(12): 50081. |
37 | Sabzekar M, Pourafshari Chenar M, Maghsoud Z, et al. Cyclic olefin polymer as a novel membrane material for membrane distillation applications[J]. Journal of Membrane Science, 2021, 621: 118845. |
38 | 赵阳, 李雪, 冯志明, 等. 降冰片烯类聚合物用于离子交换膜的研究进展[J]. 化工学报, 2015, 66(S1): 10-16. |
Zhao Y, Li X, Feng Z M, et al. Progress of ion exchange membrane based on poly(norbornene)s derivatives via ring-opening metathesis polymerization[J]. CIESC Journal, 2015, 66(S1): 10-16. | |
39 | Kushner A M, Gabuchian V, Johnson E G, et al. Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers[J]. Journal of the American Chemical Society, 2007, 129(46): 14110-14111. |
40 | Luo F, Sun T L, Nakajima T, et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels[J]. Advanced Materials, 2015, 27(17): 2722-2727. |
41 | Kean Z S, Hawk J L, Lin S T, et al. Increasing the maximum achievable strain of a covalent polymer gel through the addition of mechanically invisible cross-links[J]. Advanced Materials, 2014, 26(34): 6013-6018. |
42 | Liu J, Tan C S Y, Yu Z Y, et al. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery[J]. Advanced Materials, 2017, 29(10): 1604951. |
43 | Lu Y X, Tournilhac F, Leibler L, et al. Making insoluble polymer networks malleable via olefin metathesis[J]. Journal of the American Chemical Society, 2012, 134(20): 8424-8427. |
44 | Lu Y X, Guan Z B. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds[J]. Journal of the American Chemical Society, 2012, 134(34): 14226-14231. |
45 | Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. |
46 | Röttger M, Domenech T, van der Weegen R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356(6333): 62-65. |
47 | 陈峰, 候宇坤, 赵骞. 一种硼酸酯动态交联环氧树脂的合成与性能[J]. 化工学报, 2019, 70(11): 4449-4456. |
Chen F, Hou Y K, Zhao Q. Synthesis and properties of epoxy resin crosslinked by dynamic boronic ester bonds[J]. CIESC Journal, 2019, 70(11): 4449-4456. | |
48 | Guerre M, Taplan C, Nicolaÿ R, et al. Fluorinated vitrimer elastomers with a dual temperature response[J]. Journal of the American Chemical Society, 2018, 140(41): 13272-13284. |
49 | 刘杰, 吴立盛, 李锦锦, 等. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 47(7): 3051-3057. |
Liu J, Wu L S, Li J J, et al. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers[J]. CIESC Journal, 2023, 47(7): 3051-3057. | |
50 | Nishimura Y, Chung J, Muradyan H, et al. Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design[J]. Journal of the American Chemical Society, 2017, 139(42): 14881-14884. |
51 | Wang A H, Niu H, He Z K, et al. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers[J]. Polymer Chemistry, 2017, 8(31): 4494-4502. |
52 | Kar G P, Saed M O, Terentjev E M. Scalable upcycling of thermoplastic polyolefins into vitrimers through transesterification[J]. Journal of Materials Chemistry A, 2020, 8(45): 24137-24147. |
53 | Yang Y X, Huang L Y, Wu R Y, et al. Assembling of reprocessable polybutadiene-based vitrimers with high strength and shape memory via catalyst-free imine-coordinated boroxine[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33305-33314. |
54 | Liu S H, Liu X Y, He Z K, et al. Thermoreversible cross-linking of ethylene/propylene copolymers based on Diels-Alder chemistry: the cross-linking reaction kinetics[J]. Polymer Chemistry, 2020, 11(36): 5851-5860. |
55 | Maaz M, Riba-Bremerch A, Guibert C, et al. Synthesis of polyethylene vitrimers in a single step: consequences of graft structure, reactive extrusion conditions, and processing aids[J]. Macromolecules, 2021, 54(5): 2213-2225. |
56 | He Z K, Niu H, Liu L Y, et al. Elastomeric polyolefin vitrimer: dynamic imine bond cross-linked ethylene/propylene copolymer[J]. Polymer, 2021, 229: 124015. |
57 | Ahmadi M, Hanifpour A, Ghiassinejad S, et al. Polyolefins vitrimers: design principles and applications[J]. Chemistry of Materials, 2022, 34(23): 10249-10271. |
58 | Wang S J, Wang L, Wang B, et al. Facile preparation of recyclable cyclic polyolefin/polystyrene vitrimers with low dielectric loss based on semi-interpenetrating polymer networks for high-frequency copper-clad laminates[J]. Polymer, 2021, 233: 124214. |
59 | Xiao Y K, Liu P W, Wang W J, et al. Dynamically cross-linked polyolefin elastomers with highly improved mechanical and thermal performance[J]. Macromolecules, 2021, 54(22): 10381-10387. |
60 | Saed M O, Lin X Y, Terentjev E M. Dynamic semicrystalline networks of polypropylene with thiol-anhydride exchangeable crosslinks[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 42044-42051. |
61 | Leone G, Palucci B, Zanchin G, et al. Dynamically cross-linked polyolefins via hydrogen bonds: tough yet soft thermoplastic elastomers with high elastic recovery[J]. ACS Applied Polymer Materials, 2022, 4(5): 3770-3778. |
62 | Nair K P, Breedveld V, Weck M. Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties[J]. Macromolecules, 2008, 41(10): 3429-3438. |
63 | Neal J A, Mozhdehi D, Guan Z B. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds[J]. Journal of the American Chemical Society, 2015, 137(14): 4846-4850. |
64 | Kang J, Son D, Wang G J N, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 2018, 30(13): 1706846. |
65 | Qin B, Zhang S, Sun P, et al. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains[J]. Advanced Materials, 2020, 32(36): e2000096. |
66 | Chen L Y, You W, Wang J, et al. Enhancing the toughness and strength of polymers using mechanically interlocked hydrogen bonds[J]. Journal of the American Chemical Society, 2024, 146(1): 1109-1121. |
67 | Cui J, Nie F M, Yang J X, et al. Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing[J]. Journal of Materials Chemistry A, 2017, 5(48): 25220-25229. |
68 | Cui J, Ma Z, Pan L, et al. Self-healable gradient copolymers[J]. Materials Chemistry Frontiers, 2019, 3(3): 464-471. |
69 | Nie F M, Cui J, Zhou Y F, et al. Molecular-level tuning toward aggregation dynamics of self-healing materials[J]. Macromolecules, 2019, 52(14): 5289-5297. |
70 | Zhang Z M, Cheng L, Zhao J, et al. Synergistic covalent and supramolecular polymers for mechanically robust but dynamic materials[J]. Angewandte Chemie International Edition, 2020, 59(29): 12139-12146. |
71 | Deng J X, Bai R X, Zhao J, et al. Insights into the correlation of cross-linking modes with mechanical properties for dynamic polymeric networks[J]. Angewandte Chemie International Edition, 2023, 62(37): e202309058. |
72 | Nie F M, An C H, Cao D F, et al. Ru(Ⅱ) catalyst enables dynamic dual-cross-linked elastomers with near-infrared self-healing toward flexible electronics[J]. Advanced Functional Materials, 2022, 32(15): 2110616. |
73 | Liu H Y, Nelson A Z, Ren Y, et al. Dynamic remodeling of covalent networks via ring-opening metathesis polymerization[J]. ACS Macro Letters, 2018, 7(8): 933-937. |
74 | Cromwell O R, Chung J, Guan Z B. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds[J]. Journal of the American Chemical Society, 2015, 137(20): 6492-6495. |
75 | Wang Z T, Gu Y, Ma M Y, et al. Strengthening polyethylene thermoplastics through a dynamic covalent networking additive based on alkylboron chemistry[J]. Macromolecules, 2021, 54(4): 1760-1766. |
76 | Husted K E L, Brown C M, Shieh P, et al. Remolding and deconstruction of industrial thermosets via carboxylic acid-catalyzed bifunctional silyl ether exchange[J]. Journal of the American Chemical Society, 2023, 145(3): 1916-1923. |
77 | Zheng S Q, Liu Y, Si G F, et al. Covalently crosslinked networks from telechelic polycyclooctene with reinforced properties[J]. Chinese Journal of Chemistry, 2023, 41(16): 2002-2009. |
78 | Miao W S, Yang B, Jin B J, et al. An orthogonal dynamic covalent polymer network with distinctive topology transformations for shape-and molecular architecture reconfiguration[J]. Angewandte Chemie, 2022, 134(11): e202109941. |
79 | Schlögl S, Trutschel M L, Chassé W, et al. Entanglement effects in elastomers: macroscopic vs microscopic properties[J]. Macromolecules, 2014, 47(9): 2759-2773. |
80 | Zhou H X, Schön E M, Wang M Z, et al. Crossover experiments applied to network formation reactions: improved strategies for counting elastically inactive molecular defects in PEG gels and hyperbranched polymers[J]. Journal of the American Chemical Society, 2014, 136(26): 9464-9470. |
81 | Wang J P, Lin T S, Gu Y W, et al. Counting secondary loops is required for accurate prediction of end-linked polymer network elasticity[J]. ACS Macro Letters, 2018, 7(2): 244-249. |
82 | Miyaji K, Sugiyama T, Ohashi T, et al. Study on homogeneity in sulfur cross-linked network structures of isoprene rubber by TD-NMR and AFM–zinc stearate system[J]. Macromolecules, 2020, 53(19): 8438-8449. |
83 | Wang R, Johnson J A, Olsen B D. Odd–even effect of junction functionality on the topology and elasticity of polymer networks[J]. Macromolecules, 2017, 50(6): 2556-2564. |
84 | De Keer L, Kilic K I, Van Steenberge P H M, et al. Computational prediction of the molecular configuration of three-dimensional network polymers[J]. Nature Materials, 2021, 20: 1422-1430. |
85 | Zhang K Y, Sun Y G, Yang H, et al. Investigations on thermomechanical and structure properties of pure and wet polyimine networks by molecular dynamics simulations[J]. Materials Today Communications, 2023, 36: 106758. |
[1] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[2] | NI Zhuo, LIN Yuhao, HUANG Weiying, LIN Lirong. Preparation and reaction kinetics of epoxy resin microcapsules [J]. CIESC Journal, 2018, 69(4): 1790-1798. |
[3] | YANG Qin, ZHAO Na, FANG Chunjuan, ZHAO Junkai, WANG Wendong. Preparation and mechanical properties of novel (C3H5O)1CB[7]/PAA hydrogel with high elasticity and self-healing properties [J]. CIESC Journal, 2018, 69(12): 5326-5331. |
[4] | FENG Lei, ZHAO Yubin, XIE Xiaofeng, LV Yafei. Preparation of tunable quaternary ammonium functionalized norbornene derivatives anion exchange membrane [J]. CIESC Journal, 2015, 66(S2): 257-262. |
[5] | ZHAO Yang, LI Xue, FENG Zhiming, ZHAO Yubin, XIE Xiaofeng, CHAI Chunpeng, LUO Yunjun. Progress of ion exchange membrane based on poly(norbornene)s derivatives via ring-opening metathesis polymerization [J]. , 2015, 66(S1): 10-16. |
[6] | LI Haiyan,ZHANG Libing,LI Jie,WANG Jun. Research progresses in extrinsic self-healing polymer materials [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 133-139. |
[7] | ZHANG Yunfei,DENG Guohua. Self-healing polymer gels based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progree, 2012, 31(10): 2239-3344. |
[8] | LI Haiyan,ZHANG Libing,WANG Jun. Research progresses in intrinsic self-healing polymer materials [J]. Chemical Industry and Engineering Progree, 2012, 31(07): 1549-1554. |
[9] | ZHANG Xin,MENG Weijuan,WANG Chao,LU Zhanxia,ZHANG Yuehong,WANG Jian. Analysis of oligomers from polyolefins [J]. , 2009, 28(9): 1620-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||