CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1105-1117.DOI: 10.11949/0438-1157.20231407
• Reviews and monographs • Previous Articles Next Articles
Xiaokai CHENG1,2(), Wei LI1,2(), Jingdai WANG2, Yongrong YANG2
Received:
2023-12-31
Revised:
2024-02-11
Online:
2024-06-06
Published:
2024-04-25
Contact:
Wei LI
通讯作者:
历伟
作者简介:
程骁恺(1990—),男,博士,讲师,ChengXK@zju.edu.cn
基金资助:
CLC Number:
Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions[J]. CIESC Journal, 2024, 75(4): 1105-1117.
程骁恺, 历伟, 王靖岱, 阳永荣. 镍催化可控/活性自由基聚合反应研究进展[J]. 化工学报, 2024, 75(4): 1105-1117.
Add to citation manager EndNote|Ris|BibTeX
1 | Moad G, Solomon D H. The Chemistry of Free Radical Polymerization[M]. Oxford: Pergamon, 1995. |
2 | 沈显荣, 傅智盛, 林英, 等. 自由基技术在α-烯烃均聚以及与功能性单体共聚中的应用进展[J]. 功能高分子学报, 2016, 29(1): 109-114. |
Shen X R, Fu Z S, Lin Y, et al. Progress in radical technology for α-olefins homopolymerization or copolymerization with functional monomers[J]. Journal of Functional Polymers, 2016, 29(1): 109-114. | |
3 | Choi J, Fu G C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry[J]. Science, 2017, 356(6334): eaaf7230. |
4 | Fu G C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes[J]. ACS Central Science, 2017, 3(7): 692-700. |
5 | 殷允念, 欧阳冬晨, 王俊杰, 等. Salen钴配合物催化自由基反应的研究进展[J]. 中国科学(化学), 2020, 50(10): 1217-1232. |
Yin Y N, Ouyang D C, Wang J J, et al. Recent advances in CoSalen-catalyzed radical reactions[J]. Scientia Sinica Chimica, 2020, 50(10): 1217-1232. | |
6 | 王桂霞, 苟田田, 陈冬, 等. 过渡金属配合物催化的烯烃自由基反应进展[J]. 精细化工, 2021, 38(1): 23-33, 43. |
Wang G X, Gou T T, Chen D, et al. Research progress of transition metal complexes catalyzed radical reaction of olefins[J]. Fine Chemicals, 2021, 38(1): 23-33, 43. | |
7 | Zhang Z X, Chen P H, Liu G S. Copper-catalyzed radical relay in C(sp3)—H functionalization[J]. Chemical Society Reviews, 2022, 51(5): 1640-1658. |
8 | 赵玉海, 罗英武. 可逆失活自由基界面聚合[J]. 化工学报, 2021, 72(2): 653-668. |
Zhao Y H, Luo Y W. Reversible deactivation radical interfacial polymerization[J]. CIESC Journal, 2021, 72(2): 653-668. | |
9 | 许超群, 俞娟, 范一民, 等. 原子转移自由基聚合法接枝改性纳米纤维素及其功能化应用[J]. 化工学报, 2022, 73(3): 1022-1043. |
Xu C Q, Yu J, Fan Y M, et al. Chemical modification of nanocellulose via atom transfer radical polymerization: strategy, applications and challenges[J]. CIESC Journal, 2022, 73(3): 1022-1043. | |
10 | Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society, 1995, 117(20): 5614-5615. |
11 | Percec V, Barboiu B. “Living” radical polymerization of styrene initiated by arenesulfonyl chlorides and C u Ⅰ ( b p y ) n C l [J]. Macromolecules, 1995, 28(23): 7970-7972. |
12 | Haddleton D M, Jasieczek C B, Hannon M J, et al. Atom transfer radical polymerization of methyl methacrylate initiated by alkyl bromide and 2-pyridinecarbaldehyde imine copper(Ⅰ) complexes[J]. Macromolecules, 1997, 30(7): 2190-2193. |
13 | Tang W, Kwak Y, Braunecker W, et al. Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants[J]. Journal of the American Chemical Society, 2008, 130(32): 10702-10713. |
14 | Di Lena F, Matyjaszewski K. Transition metal catalysts for controlled radical polymerization[J]. Progress in Polymer Science, 2010, 35(8): 959-1021. |
15 | Matyjaszewski K. Atom transfer radical polymerization (ATRP): current status and future perspectives[J]. Macromolecules, 2012, 45(10): 4015-4039. |
16 | Kamigaito M. Recent developments in metal-catalyzed living radical polymerization[J]. Polymer Journal, 2011, 43(2): 105-120. |
17 | Dadashi-Silab S, Matyjaszewski K. Iron catalysts in atom transfer radical polymerization[J]. Molecules, 2020, 25(7): 1648. |
18 | Benchaphanthawee W, Peng C H. Organo-cobalt complexes in reversible-deactivation radical polymerization[J]. Chemical Record, 2021, 21(12): 3628-3647. |
19 | Diccianni J, Lin Q, Diao T N. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization[J]. Accounts of Chemical Research, 2020, 53(4): 906-919. |
20 | Mecking S, Schnitte M. Neutral nickel (Ⅱ) catalysts: from hyperbranched oligomers to nanocrystal-based materials[J]. Accounts of Chemical Research, 2020, 53(11): 2738-2752. |
21 | Mu H L, Pan L, Song D P, et al. Neutral nickel catalysts for olefin homo- and copolymerization: relationships between catalyst structures and catalytic properties[J]. Chemical Reviews, 2015, 115(22): 12091-12137. |
22 | Wang Z, Liu Q B, Solan G A, et al. Recent advances in Ni-mediated ethylene chain growth: nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure[J]. Coordination Chemistry Reviews, 2017, 350: 68-83. |
23 | Tan C, Chen C L. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers[J]. Angewandte Chemie International Edition, 2019, 58(22): 7192-7200. |
24 | Mahmood Q, Li X X, Qin L D, et al. Structural evolution of iminopyridine support for nickel/palladium catalysts in ethylene (oligo)polymerization[J]. Dalton Transactions, 2022, 51(38): 14375-14407. |
25 | Johnson L K, Mecking S, Brookhart M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium (Ⅱ) catalysts[J]. Journal of the American Chemical Society, 1996, 118(1): 267-268. |
26 | Younkin T R, Connor E F, Henderson J I, et al. Neutral, single-component nickel ( Ⅱ ) polyolefin catalysts that tolerate heteroatoms[J]. Science, 2000, 287(5452): 460-462. |
27 | Drent E, van Dijk R, van Ginkel R, et al. Palladium catalysed copolymerisation of ethene with alkylacrylates: polar comonomer built into the linear polymer chain[J]. Chemical Communications, 2002(7): 744-745. |
28 | Zuideveld M A, Wehrmann P, Röhr C, et al. Remote substituents controlling catalytic polymerization by very active and robust neutral nickel ( Ⅱ ) complexes[J]. Angewandte Chemie International Edition, 2004, 43(7): 869-873. |
29 | Zhang L, Hao X, Sun W H, Redshaw C. Synthesis, characterization, and ethylene polymerization behavior of 8-(nitroarylamino)-5,6,7-trihydroquinolylnickel dichlorides: influence of the nitro group and impurities on catalytic activity[J]. ACS Catalysis, 2011, 1(10): 1213-1220. |
30 | Fu X, Zhang L J, Tanaka R, et al. Highly robust nickel catalysts containing anilinonaphthoquinone ligand for copolymerization of ethylene and polar monomers[J]. Macromolecules, 2017, 50(23): 9216-9221. |
31 | Zhong L, Li G L, Liang G D, et al. Enhancing thermal stability and living fashion in α-diimine-nickel-catalyzed (co)polymerization of ethylene and polar monomer by increasing the steric bulk of ligand backbone[J]. Macromolecules, 2017, 50(7): 2675-2682. |
32 | Zhang Y X, Wang C Q, Mecking S, et al. Ultrahigh branching of main-chain-functionalized polyethylenes by inverted insertion selectivity[J]. Angewandte Chemie International Edition, 2020, 59(34): 14296-14302. |
33 | Yang J S, Hu X Q, Jian Z B. Photoresponsive α-diimine nickel modulated ethylene (co)polymerization[J]. Chinese Journal of Chemistry, 2022, 40(24): 2919-2926. |
34 | Tan C, Chen M, Chen C L. ‘Catalyst + X' strategies for transition metal-catalyzed olefin-polar monomer copolymerization[J]. Trends in Chemistry, 2023, 5(2): 147-159. |
35 | Gillies M B, Matyjaszewski K, Norrby P O, et al. A DFT study of R-X bond dissociation enthalpies of relevance to the initiation process of atom transfer radical polymerization[J]. Macromolecules, 2003, 36(22): 8551-8559. |
36 | Granel C, Dubois P, Jérôme R, et al. Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel (Ⅱ) complex and different activated alkyl halides[J]. Macromolecules, 1996, 29(27): 8576-8582. |
37 | O'Reilly R K, Shaver M P, Gibson V C. Nickel (Ⅱ) α-diimine catalysts for the atom transfer radical polymerization of styrene[J]. Inorganica Chimica Acta, 2006, 359(13): 4417-4420. |
38 | Shi Q, Chen L L, Liu D F, et al. A new tetranuclear nickel complex based on the benzimidazole ligand for the controllable polymerization of methyl methacrylate[J]. Inorganic Chemistry Communications, 2013, 29: 22-26. |
39 | Kato M, Kamigaito M, Sawamoto M, et al. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine)ruthenium (Ⅱ)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization[J]. Macromolecules, 1995, 28(5): 1721-1723. |
40 | Uegaki H, Kotani Y, Kamigaito M, et al. Nickel-mediated living radical polymerization of methyl methacrylate[J]. Macromolecules, 1997, 30(8): 2249-2253. |
41 | Ouchi M, Terashima T, Sawamoto M. Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers[J]. Accounts of Chemical Research, 2008, 41(9): 1120-1132. |
42 | Uegaki H, Kotani Y, Kamigaito M, et al. NiBr2(Pn-Bu3)2-mediated living radical polymerization of methacrylates and acrylates and their block or random copolymerizations[J]. Macromolecules, 1998, 31(20): 6756-6761. |
43 | Uegaki H, Kamigaito M, Sawamoto M. Living radical polymerization of methyl methacrylate with a zerovalent nickel complex, Ni(PPh3)41 [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(15): 3003-3009. |
44 | Moineau G, Minet M, Dubois P, et al. Controlled radical polymerization of (meth)acrylates by ATRP with NiBr2(PPh3)2 as catalyst[J]. Macromolecules, 1999, 32(1): 27-35. |
45 | Ydens I, Degée P, Haddleton D M, et al. Reactivity ratios in conventional and nickel-mediated radical copolymerization of methyl methacrylate and functionalized methacrylate monomers[J]. European Polymer Journal, 2005, 41(10): 2255-2263. |
46 | Moineau C, Minet M, Teyssié P, et al. Synthesis and characterization of poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) copolymers by two-step controlled radical polymerization (ATRP) catalyzed by NiBr2(PPh3)2 [J]. Macromolecules, 1999, 32(25): 8277-8282. |
47 | 秦东奇, 钦曙辉, 丘坤元. 镍体系(NiCl2/PPh3)2催化的反向原子转移自由基聚合[J]. 高分子学报, 2002, 1: 108-112. |
Qin D Q, Qin S H, Qiu K Y. A reverse ATRP process catalyzed by nickel-based (Ni Cl2/PPh3) system[J]. Acta Polymerica Sinica, 2002, 1: 108-112. | |
48 | Li P, Qiu K Y. Nickel-mediated living radical polymerization of styrene in conjunction with tetraethylthiuram disulfide[J]. Polymer, 2002, 43(22): 5873-5877. |
49 | Yamamoto K, Miwa Y H, Tanaka H, et al. Living radical graft polymerization of methyl methacrylate to polyethylene film with typical and reverse atom transfer radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(20): 3350-3359. |
50 | Sun H M, Yang M J, Shen Q. Polymerization of styrene by neutral Ni (Ⅱ) acetylide complex[J]. Chinese Chemical Letters, 2001, 12(11): 1033-1036. |
51 | Shao Q, Sun H M, Pang X G, et al. A neutral Ni (Ⅱ) acetylide-mediated radical polymerization of methyl methacrylate using the atom transfer radical polymerization method[J]. European Polymer Journal, 2004, 40(1): 97-102. |
52 | Il'ichev I S, Valetova N B, Moskalev M V, et al. Polymerization of methyl methacrylate using the NiX2(PPh3)2/Zn catalytic system[J]. Kinetics and Catalysis, 2008, 49(4): 531-536. |
53 | De Roma A, Yang H J, Milione S, et al. Atom transfer radical polymerization of methylmethacrylate mediated by a naphtyl-nickel (Ⅱ) phosphane complex[J]. Inorganic Chemistry Communications, 2011, 14(4): 542-544. |
54 | Duquesne E, Degée P, Habimana J, et al. Supported nickel bromide catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate[J]. Chemical Communications, 2004(6): 640-641. |
55 | Duquesne E, Habimana J, Degée P, et al. Nickel-catalyzed supported ATRP of methyl methacrylate using cross-linked polystyrene triphenylphosphine as ligand[J]. Macromolecules, 2005, 38(24): 9999-10006. |
56 | Duquesne E, Habimana J, Degée P, et al. Synthesis of silicone-methacrylate copolymers by ATRP using a nickel-based supported catalyst[J]. Macromolecular Chemistry and Physics, 2006, 207(13): 1116-1125. |
57 | Zhao S, Zhao J, Lou L L, et al. Amino-functionalized SBA-15 immobilized NiBr2(PPh3)2 as a highly effective catalyst for ATRP of MMA[J]. Microporous and Mesoporous Materials, 2011, 137(1/2/3): 36-42. |
58 | 赵亚光, 禹蒙蒙, 刘禹初, 等. 有机金属配合物控制的活性自由基聚合研究进展[J]. 中国科学: 化学, 2014, 44(2): 236-253. |
Zhao Y G, Yu M M, Liu Y C, et al. Recent progress in organometallic mediated radical polymerization[J] Scientia Sinica Chimica, 2014, 44(2): 236-253. | |
59 | Wang F L, Yang C J, Liu J R, et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)—C(sp) cross-coupling of tertiary electrophiles with alkynes[J]. Nature Chemistry, 2022, 14: 949-957. |
60 | Wayland B B, Poszmik G, Fryd M. Metalloradical reactions of rhodium (Ⅱ) porphyrins with acrylates: reduction, coupling, and photopromoted polymerization[J]. Organometallics, 1992, 11(11): 3534-3542. |
61 | Poli R, Allan L E N, Shaver M P. Iron-mediated reversible deactivation controlled radical polymerization[J]. Progress in Polymer Science, 2014, 39(10): 1827-1845. |
62 | Allan L E N, Perry M R, Shaver M P. Organometallic mediated radical polymerization[J]. Progress in Polymer Science, 2012, 37(1): 127-156. |
63 | Leblanc A, Grau E, Broyer J P, et al. Homo- and copolymerizations of (meth)acrylates with olefins (styrene, ethylene) using neutral nickel complexes: a dual radical/catalytic pathway[J]. Macromolecules, 2011, 44(9): 3293-3301. |
64 | Silva T T, Silva Y F, Machado A E H, et al. Cycloalkyl-substituted salicylaldimine-nickel (Ⅱ) complexes as mediators in controlled radical polymerization of vinyl acetate[J]. Journal of Macromolecular Science, Part A, 2019, 56(12): 1132-1140. |
65 | Schultz D M, Yoon T P. Solar synthesis: prospects in visible light photocatalysis[J]. Science, 2014, 343(6174): 1239176. |
66 | Matsui J K, Lang S B, Heitz D R, et al. Photoredox-mediated routes to radicals: the value of catalytic radical generation in synthetic methods development[J]. ACS Catalysis, 2017, 7(4): 2563-2575. |
67 | Lipp A, Badir S O, Molander G A. Stereoinduction in metallaphotoredox catalysis[J]. Angewandte Chemie International Edition, 2021, 60(4): 1714-1726. |
68 | Chan A Y, Perry I B, Bissonnette N B, et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis[J]. Chemical Reviews, 2022, 122(2): 1485-1542. |
69 | Shanmugam S, Xu J T, Boyer C. Photocontrolled living polymerization systems with reversible deactivations through electron and energy transfer[J]. Macromolecular Rapid Communications, 2017, 38(13): 1700143. |
70 | Aydogan C, Yilmaz G, Shegiwal A, et al. Photoinduced controlled/living polymerizations[J]. Angewandte Chemie International Edition, 2022, 61(23): e202117377. |
71 | Wenger O S. Photoactive nickel complexes in cross-coupling catalysis[J]. Chemistry, 2021, 27(7): 2270-2278. |
72 | Lim C H, Kudisch M, Liu B, et al. C—N cross-coupling via photoexcitation of nickel-amine complexes[J]. Journal of the American Chemical Society, 2018, 140(24): 7667-7673. |
73 | Kudisch M, Lim C H, Thordarson P, et al. Energy transfer to Ni-amine complexes in dual catalytic, light-driven C—N cross-coupling reactions[J]. Journal of the American Chemical Society, 2019, 141(49): 19479-19486. |
74 | Cheng X K, Lu H Z, Lu Z. Enantioselective benzylic C—H arylation via photoredox and nickel dual catalysis[J]. Nature Communications, 2019, 10: 3549. |
75 | Pesqueira N M, Bignardi C, Oliveira L F, et al. Visible light-induced radical polymerization of vinyl acetate mediated by organo-nickel N2O2 Schiff-base complexes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 437: 114443. |
[1] | Yuhang HE, Dan XIE, Yangcheng LYU. Research progress of cationic polymerization in microreactor [J]. CIESC Journal, 2024, 75(4): 1302-1316. |
[2] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[3] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[4] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[5] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[6] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[7] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[8] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[9] | Lisheng WU, Jie LIU, Tiantian WANG, Zhenghong LUO, Yinning ZHOU. Progress in dynamically crosslinked polyolefins derived from ring-opening metathesis polymerization [J]. CIESC Journal, 2024, 75(4): 1118-1136. |
[10] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
[11] | Na PAN, Chang TIAN, Lankun HUAI, Yuyu LIU, Fenfen ZHANG, Xiaomei GAO, Wei LIU, Liangguo YAN, Yanxia ZHAO. Synthesis and application of polymerized Al-Ti based flocculant [J]. CIESC Journal, 2024, 75(3): 1009-1018. |
[12] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
[13] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[14] | Yanping JIA, Dongxu YIN, Jingyi XU, Haifeng ZHANG, Lanhe ZHANG. Mechanism study of oxytetracycline hydrochloride degradation through activating sulfite by Fe2+/Mn2+ [J]. CIESC Journal, 2024, 75(2): 647-658. |
[15] | Xingyu GAI, Yuxue YUE, Chunhua YANG, Zilong ZHANG, Tianzi CAI, Haifeng ZHANG, Bolin WANG, Xiaonian LI. Carbon supported Cs- and Cu-based catalysts for gas-phase dehydrochlorination of 1,1,2-trichloroethane [J]. CIESC Journal, 2024, 75(2): 575-583. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||