[1] |
BUWALDA S J, BOERE K W M, DIJKSTRA P J, et al. Hydrogels in a historical perspective:from simple networks to smart materials[J]. Journal of Controlled Release, 2014, 190:254-273.
|
[2] |
LEIJTEN J, SEO J, KAN Y, et al. Spatially and temporally controlled hydrogels for tissue engineering[J]. Materials Science & Engineering R Reports, 2017, 119:1-35.
|
[3] |
ALGE D L, AZAGARSAMY M A, DONOHUE D F, et al. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry[J]. Biomacromolecules, 2013, 14(4):949-53.
|
[4] |
王露一, 单国荣. 聚环氧乙烷对PAMPS/PAM双网络水凝胶结构和性能的影响[J]. 化工学报, 2012, 63(8):2642-2647. WANG L Y, SHAN G R. Influence of poly(ethylene oxide) on structure and properties of PAMPS/PAM double network hydrogels[J]. CIESC Journal, 2012, 63(8):2642-2647.
|
[5] |
张小燕. pH振荡反应及水凝胶的性能研究[D]. 兰州:西北师范大学, 2014. ZHANG X Y. pH oscillation chemical reactions and the properties of hydrogels[D]. Lanzhou:Northwest Normal University, 2014.
|
[6] |
BAE K H, WANG L S, KURISAWA M. Injectable biodegradable hydrogels:progress and challenges[J]. Journal of Materials Chemistry B, 2013, 1(40):5371-5388.
|
[7] |
BUWALDA S J, VERMONDEN T, HENNINK W E. Hydrogels for therapeutic delivery:current developments and future directions[J]. Biomacromolecules, 2017, 18(2):316-330.
|
[8] |
JIANG Y, CHEN J, DENG C, et al. Click hydrogels, microgels and nanogels:emerging platforms for drug delivery and tissue engineering[J]. Biomaterials, 2014, 35(18):4969-4985.
|
[9] |
BILLIET T, VANDENHAUTE M, SCHELFHOUT J, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering[J]. Biomaterials, 2012, 33(26):6020-6041.
|
[10] |
ZHU L, QIU J, SAKAI E, et al. Design of a rubbery carboxymethyl cellulose/polyacrylic acid hydrogel via visible-light-triggered polymerization[J]. Macromolecular Materials & Engineering, 2017, 302(6):1600509.
|
[11] |
LIU Z, DU J, TAN Y, et al. Strengthening network of polyacrylic acid/silica nanocomposite hydrogels[J]. Polymer Composites, 2018, 39(11):3969-3976.
|
[12] |
DUAN J J, ZHANG L N. Robust and smart hydrogels based on natural polymers[J]. Chinese J. Polym. Sci., 2017, 35(10):1165-1180.
|
[13] |
GONG J P, KATSUYAMA Y, KUROKAWA T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14):1155-1158.
|
[14] |
CHEN Q, ZHU L, ZHAO C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J]. Advanced Materials, 2013, 25(30):4171-4176.
|
[15] |
TUNCABOYLU D C, SARI M, OPPERMANN W, et al. Tough and self-healing hydrogels formed via hydrophobic interactions[J]. Macromolecules, 2011, 44(12):4997-5005.
|
[16] |
WANG J, LIN L, CHENG Q, et al. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel[J]. Angewandte Chemie, 2012, 51(19):4494-4494.
|
[17] |
YANG J, ZHAO J J, XU F, et al. Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals:insight into morphologies and interactions[J]. ACS Applied Materials & Interfaces, 2013, 5(24):12960-12967.
|
[18] |
JIANG X, XIANG N, WANG J, et al. Preparation and characterization of hybrid double network chitosan/poly (acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking[J]. Carbohydrate Polymers, 2017, 173:701-706.
|
[19] |
SU Q, DUAN L, ZOU M, et al. The tough allograft adhesive behavior between polyacrylamide and poly (acrylic acid) hydrophobic association hydrogels[J]. Materials Chemistry & Physics, 2017, 193:57-62.
|
[20] |
MARTIN A D, WOJCIECHOWSKI J P, ROBINSON A B, et al. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups[J]. Scientific Reports, 2017, 7:43947.
|
[21] |
YANG Q, LÜ J. A pH-responsive self-healing gel with cross-linking of cucurbituril(CB[n]) via hydrogen bonding[J]. Chemistry Letters, 2018, 47(2):192-195.
|
[22] |
毕强, 胡英鹏, 杨琴, 等. 水-盐酸两步分离瓜环混合物[J]. 有机化学, 2007, 27(7):880-884. BI Q, HU Y P, YANG Q, et al. A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid[J]. Chinese Journal of Organic Chemistry, 2007, 27(7):880-884.
|
[23] |
YANG Q, LI X L, JIANG Y, et al. Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils[J]. Materials Research Innovations, 2014, 18(4):280-283.
|
[24] |
AHN Y, JANG Y, SELVAPALAM N, et al. Supramolecular velcro for reversible underwater adhesion[J]. Angewandte Chemie, 2013, 52(11):3140-3144.
|
[25] |
李文姣. 牙根管充填用纳米复合水凝胶的设计及制备[D]. 上海:东华大学, 2015. LI W J. Design and preparation of nanocomposite hydrogels for application in canal filling materials[D]. Shanghai:Donghua University, 2015.
|
[26] |
尹云雷, 普丹丹, 周洋洋, 等. 丝素/聚己内酯纳米纤维膜结构与力学性能的研究[J]. 纺织导报, 2016, (8):50-53. YIN Y L, PU D D, ZHOU Y Y, et al. Structure and mechanical properties of silk fibroin/poly(ε-caprolactone) nanofiber membranes[J]. China Textile Leader, 2016, (8):50-53.
|
[27] |
洪浩群, 李雪松, 张海燕. 聚丙烯酸水凝胶自修复性能及溶胀行为的研究[J]. 功能材料, 2016, 47(9):9012-9016. HONG H Q, LI X S, ZHANG H Y. Study on the self-healing performances and swelling behavior of polyacrylic acid hydrogels[J]. Journal of Functional Materials, 2016, 47(9):9012-9016.
|
[28] |
雷光财. 丙烯酸系高吸水性树脂微球多孔结构的形成/控制及成孔机理研究[D]. 厦门:厦门大学, 2009. LEI G C. Formation and control and of porous structure of acrylate super-absorbent resin micro-spheres and mechanism research of pore-forming[D]. Xiamen:Xiamen University, 2009.
|
[29] |
刘延平. 温敏性水凝胶的合成及相变机理[D]. 青岛:青岛科技大学, 2012. LIU Y P. Synthesis and phase transition mechanism of temperature-sensitive hydrogel[D]. Qingdao:Qingdao University of Science and Technology, 2012.
|
[30] |
董坤, 魏钊, 杨志懋, 等. 自愈合凝胶:结构、性能及展望[J]. 中国科学:化学, 2012, 42(6):741-756. DONG K, WEI Z, YANG Z M, et al. Self-healing gels:structure, performance and future perspective[J]. Scientia Sinica, Chimica, 2012, 42(6):741-756.
|