CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1137-1152.DOI: 10.11949/0438-1157.20231401

• Reviews and monographs • Previous Articles     Next Articles

Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability

Zijia ZHANG1(), Xinyue QIU1, Xiang SUN2, Zhibin LUO2, Haizhong LUO2, Gaohong HE1, Xuehua RUAN1()   

  1. 1.School of Chemical Engineering at Panjin, Dalian University of Technology, Panjin 124221, Liaoning, China
    2.Guangdong Electric Power Design Institute Co. , Ltd. , China Energy Engineering Group, Guangzhou 510663, Guangdong, China
  • Received:2023-12-31 Revised:2024-02-10 Online:2024-06-06 Published:2024-04-25
  • Contact: Xuehua RUAN

聚酰亚胺膜材料分子结构设计强化CO2渗透性研究进展

张子佳1(), 仇昕月1, 孙翔2, 罗志斌2, 罗海中2, 贺高红1, 阮雪华1()   

  1. 1.大连理工大学化工学院盘锦分院,辽宁 盘锦 124221
    2.中国能源建设集团广东省电力设计研究院有限公司,广东 广州 510663
  • 通讯作者: 阮雪华
  • 作者简介:张子佳(1998—),男,硕士研究生,zhangzijia@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(21978033);山东省自然科学基金项目(2022CXGC010303);中石油创新基金项目(2021DQ02-0802);中央高校基本科研业务费专项资金项目(DUT22QN247)

Abstract:

Membrane technology relying on the difference in gas permeation ability has been widely attempted for carbon dioxide removal from natural gases. Owing to the feature without phase change, membrane technology has remarkable advantage in energy saving. In addition, membrane plants can be manufactured under modularization layout and highly flexible to face the wide change in extraction scale for unconventional resources. Polyimide (PI) is a widely studied glassy polymer membrane material with high decarbonization selectivity and good chemical stability. In recent years, it has been industrially applied in the field of natural gas decarbonization. Even though, molecular structure design is remaining an important research direction for polyimide membrane materials to enhance carbon dioxide permeation ability and then make great savings in both investment and footprint space for membrane plants. In this review, based on the mechanism for gas permeation and separation in glassy polymeric membranes, we have summarized the research progress around aromatic polyimide membrane materials, e.g., tailoring and customizing the isomerized backbone configuration, the steric and bulky side groups, and the locally expanded segments; meanwhile, the internal relevance about these molecular structure design issues on fractional free volume and gas permeation ability are concluded. Furthermore, a concise outlook on future research direction has also been suggested for polyimide membrane materials. Taking into account both the free volume fraction and the free volume hole size distribution range is an important way to simultaneously improve permeability and selectivity.

Key words: natural gas decarbonization, membrane separation, polyimide, molecular structure, permeability, fractional free volume

摘要:

膜技术基于渗透性差异实现天然气无相变脱碳,节能优势显著,此外膜装置的模块化制造可以灵活应对非常规天然气开采规模的大幅变化。聚酰亚胺(PI)是一种广泛研究的玻璃态聚合物膜材料,脱碳选择性较高、化学稳定性好,近年来在天然气脱碳领域已实现工业应用。尽管如此,通过分子结构设计提升聚酰亚胺膜的渗透性,从而大幅降低膜装置建设成本和占地面积,仍是未来的重要研究方向。从气体在玻璃态聚合物膜中的渗透传质机制出发,归纳总结了芳香族聚酰亚胺在链段构型与柔顺性、大位阻侧基、主链轴节结构等方面的设计进展以及膜材料自由体积分数和气体渗透系数随之发生变化的内在规律,对聚酰亚胺膜材料分子结构设计的未来发展方向进行了展望,兼顾考虑自由体积分数和自由体积空穴尺寸分布范围是同时提高渗透性和选择性的重要途径。

关键词: 天然气脱碳, 膜分离, 聚酰亚胺, 分子结构, 渗透性, 自由体积

CLC Number: