CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1137-1152.DOI: 10.11949/0438-1157.20231401
• Reviews and monographs • Previous Articles Next Articles
Zijia ZHANG1(), Xinyue QIU1, Xiang SUN2, Zhibin LUO2, Haizhong LUO2, Gaohong HE1, Xuehua RUAN1()
Received:
2023-12-31
Revised:
2024-02-10
Online:
2024-06-06
Published:
2024-04-25
Contact:
Xuehua RUAN
张子佳1(), 仇昕月1, 孙翔2, 罗志斌2, 罗海中2, 贺高红1, 阮雪华1()
通讯作者:
阮雪华
作者简介:
张子佳(1998—),男,硕士研究生,zhangzijia@mail.dlut.edu.cn
基金资助:
CLC Number:
Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability[J]. CIESC Journal, 2024, 75(4): 1137-1152.
张子佳, 仇昕月, 孙翔, 罗志斌, 罗海中, 贺高红, 阮雪华. 聚酰亚胺膜材料分子结构设计强化CO2渗透性研究进展[J]. 化工学报, 2024, 75(4): 1137-1152.
Add to citation manager EndNote|Ris|BibTeX
膜种类 | 测试压力/MPa | 测试 温度/℃ | CO2渗透系数/Barrer | 文献 |
---|---|---|---|---|
6FDA-FSBC | — | 35 | 66.0 | [ |
6FDA-SBC | — | 35 | 32.1 | [ |
6FDA-MSBC | — | 35 | 21.2 | [ |
6FDA-BAN | — | — | 845.0 | [ |
DPt-TMPD | 0.2 | 35 | 2035.0 | [ |
DBPI-550 | 0.4 | 35 | 20639.0 | [ |
CTPI-550 | 0.6 | 35 | 4633.0 | [ |
BBPI | — | — | 275.3 | [ |
6FDA-FFDA/DAM | — | — | 197.1 | [ |
Table 1 CO2 permeability of typical substitution modified PI membranes
膜种类 | 测试压力/MPa | 测试 温度/℃ | CO2渗透系数/Barrer | 文献 |
---|---|---|---|---|
6FDA-FSBC | — | 35 | 66.0 | [ |
6FDA-SBC | — | 35 | 32.1 | [ |
6FDA-MSBC | — | 35 | 21.2 | [ |
6FDA-BAN | — | — | 845.0 | [ |
DPt-TMPD | 0.2 | 35 | 2035.0 | [ |
DBPI-550 | 0.4 | 35 | 20639.0 | [ |
CTPI-550 | 0.6 | 35 | 4633.0 | [ |
BBPI | — | — | 275.3 | [ |
6FDA-FFDA/DAM | — | — | 197.1 | [ |
膜 | 测试压力/MPa | 测试 温度/℃ | CO2渗透系数/Barrer | 文献 |
---|---|---|---|---|
TNTDA-DAT | 0.1 | 25 | 728.0 | [ |
6FcDA-Me2NH2-TB | 2987.0 | [ | ||
CANAL-PI-Me2NH2 | 0.2 | 35 | 1691.0 | [ |
SBIDA-DMNDA | 0.5 | 35 | 1400.0 | [ |
BTA-CANAL-2 | 0.2 | 35 | 1995.0 | [ |
PIM-PI | 0.2 | 30 | 2000.0 | [ |
PMDA-DAT | — | 35 | 79.5 | [ |
6F6FTB-0.5-450 | — | — | 1317.0 | [ |
PI-TB-7 | 0.1 | 35 | 112.0 | [ |
PIM-PI-EA | — | 35 | 7340.0 | [ |
PIM-TM-Ac-300 | 0.1 | 35 | 194.0 | [ |
Table 2 CO2 permeability of PI membranes with typical backbone structure adjustment
膜 | 测试压力/MPa | 测试 温度/℃ | CO2渗透系数/Barrer | 文献 |
---|---|---|---|---|
TNTDA-DAT | 0.1 | 25 | 728.0 | [ |
6FcDA-Me2NH2-TB | 2987.0 | [ | ||
CANAL-PI-Me2NH2 | 0.2 | 35 | 1691.0 | [ |
SBIDA-DMNDA | 0.5 | 35 | 1400.0 | [ |
BTA-CANAL-2 | 0.2 | 35 | 1995.0 | [ |
PIM-PI | 0.2 | 30 | 2000.0 | [ |
PMDA-DAT | — | 35 | 79.5 | [ |
6F6FTB-0.5-450 | — | — | 1317.0 | [ |
PI-TB-7 | 0.1 | 35 | 112.0 | [ |
PIM-PI-EA | — | 35 | 7340.0 | [ |
PIM-TM-Ac-300 | 0.1 | 35 | 194.0 | [ |
1 | Kenarsari S D, Yang D L, Jiang G D, et al. Review of recent advances in carbon dioxide separation and capture[J]. RSC Advances, 2013, 3(45): 22739-22773. |
2 | Sanaeepur S, Sanaeepur H, Kargari A, et al. Renewable energies: climate-change mitigation and international climate policy[J]. International Journal of Sustainable Energy, 2014, 33(1): 203-212. |
3 | Gleason K, Smith Z, Liu Q, et al. Pure- and mixed-gas permeation of CO2 and CH4 in thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)[J]. Journal of Membrane Science, 2015, 475: 204-214. |
4 | Tian Z Q, Dai S, Jiang D E. Expanded porphyrins as two-dimensional porous membranes for CO2 separation[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 13073-13079. |
5 | Angelidaki I, Treu L, Tsapekos P, et al. Biogas upgrading and utilization: current status and perspectives[J]. Biotechnology Advances, 2018, 36(2): 452-466. |
6 | Li P, Coleman M R. Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications[J]. European Polymer Journal, 2013, 49(2): 482-491. |
7 | Galizia M, Chi W S, Smith Z P, et al. 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities[J]. Macromolecules, 2017, 50(20): 7809-7843. |
8 | Shamsipur H, Dawood B A, Budd P M, et al. Thermally rearrangeable PIM-polyimides for gas separation membranes[J]. Macromolecules, 2014, 47(16): 5595-5606. |
9 | Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions[J]. Progress in Polymer Science, 2014, 39(5): 817-861. |
10 | Brown A J, Brunelli N A, Eum K, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
11 | Chew Y E, Putra Z A, Foo D C Y. Process simulation and optimisation for acid gas removal system in natural gas processing[J]. Journal of Natural Gas Science and Engineering, 2022, 107: 104764. |
12 | Park C Y, Kim E H, Kim J H, et al. Novel semi-alicyclic polyimide membranes: synthesis, characterization, and gas separation properties[J]. Polymer, 2018, 151: 325-333. |
13 | Liu Z Y, Liu Y, Qiu W L, et al. Molecularly engineered 6FDA-based polyimide membranes for sour natural gas separation[J]. Angewandte Chemie International Edition, 2020, 59(35): 14877-14883. |
14 | Castro-Muñoz R, Martin-Gil V, Ahmad M Z, et al. Matrimid® 5218 in preparation of membranes for gas separation: current state-of-the-art[J]. Chemical Engineering Communications, 2018, 205(2): 161-196. |
15 | 王荣, 王永洪, 张新儒, 等. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
Wang R, Wang Y H, Zhang X R, et al. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application[J]. CIESC Journal, 2023, 74(4): 1433-1445. | |
16 | 李彬, 王凯君, 姜爽, 等. 基于杂环结构的耐高温聚酰亚胺材料研究进展[J]. 化工学报, 2020, 71(6): 2643-2659. |
Li B, Wang K J, Jiang S, et al. Progress in synthesis of high temperature resistant polyimides with heterocyclic structure[J]. CIESC Journal, 2020, 71(6): 2643-2659. | |
17 | Vanherck K, Koeckelberghs G, Vankelecom I F J. Crosslinking polyimides for membrane applications: a review[J]. Progress in Polymer Science, 2013, 38(6): 874-896. |
18 | Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380. |
19 | Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
20 | Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
21 | Xiao Y C, Low B T, Hosseini S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—a review[J]. Progress in Polymer Science, 2009, 34(6): 561-580. |
22 | Coleman M R, Koros W J. The transport properties of polyimide isomers containing hexafluoroisopropylidene in the diamine residue[J]. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(11): 1915-1926. |
23 | Koros W J, Coleman M R, Walker D B. Controlled permeability polymer membranes[J]. Annual Review of Materials Science, 1992, 22: 47-89. |
24 | McHattie J S, Koros W J, Paul D R. Gas transport properties of polysulphones(1): Role of symmetry of methyl group placement on bisphenol rings[J]. Polymer, 1991, 32(5): 840-850. |
25 | Calle M, Lozano A E, de Abajo J, et al. Design of gas separation membranes derived of rigid aromatic polyimides(1): Polymers from diamines containing di-tert-butyl side groups[J]. Journal of Membrane Science, 2010, 365(1/2): 145-153. |
26 | Belov N, Chatterjee R, Nikiforov R, et al. New poly(ether imide)s with pendant di-tert-butyl groups: synthesis, characterization and gas transport properties[J]. Separation and Purification Technology, 2019, 217: 183-194. |
27 | 邓国雄. 网络微孔聚酰亚胺气体分离膜的制备及优化[D]. 天津: 天津理工大学, 2022. |
Deng G X. Preparation and optimization of network microporous polyimide membrane for gas separation[D]. Tianjin: Tianjin University of Technology, 2022. | |
28 | Jue M L, Lively R P. Targeted gas separations through polymer membrane functionalization[J]. Reactive and Functional Polymers, 2015, 86: 88-110. |
29 | Zhang C L, Li P, Cao B. Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides[J]. Journal of Membrane Science, 2017, 530: 176-184. |
30 | Huo G L, Xu S, Wu L, et al. Structural engineering on copolyimide membranes for improved gas separation performance[J]. Journal of Membrane Science, 2022, 643: 119989. |
31 | Yen H J, Wu J H, Huang Y H, et al. Novel thermally stable and soluble triarylamine functionalized polyimides for gas separation[J]. Polymer Chemistry, 2014, 5(14): 4219-4226. |
32 | 王汉利. 含氟大苯侧基聚酰亚胺合成及其气体分离膜[D]. 大连: 大连理工大学, 2019. |
Wang H L. Synthesis and gas separation membrane of fluorinated polyimide with bulky phenyl side groups[D].Dalian: Dalian University of Technology, 2019. | |
33 | Li T Y, Liu J J, Zhao S S, et al. Microporous polyimides containing bulky tetra-o-isopropyl and naphthalene groups for gas separation membranes[J]. Journal of Membrane Science, 2019, 585: 282-288. |
34 | Sulub-Sulub R, Loría-Bastarrachea M I, Vázquez H, et al. Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: synthesis, characterization and gas transport[J]. Journal of Membrane Science, 2018, 563: 134-141. |
35 | Santiago-García J L, Álvarez C, Sánchez F, et al. Gas transport properties of new aromatic polyimides based on 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride[J]. Journal of Membrane Science, 2015, 476: 442-448. |
36 | Xu X C, Wang J J, Dong J, et al. Ionic polyimide membranes containing Tröger's base: synthesis, microstructure and potential application in CO2 separation[J]. Journal of Membrane Science, 2020, 602: 117967. |
37 | Tong X H, Wang S L, Dai J N, et al. The effect of chain rigidity and microstructure on gas separation performance of the cardo-based polyimides[J]. Polymer, 2022, 254: 125046. |
38 | Ni J, Niu H C, Lai S Q, et al. Synthesis of new copolyimides containing pyridine and morpholine groups for gas separation through molecular design and simulation[J]. Journal of Applied Polymer Science, 2022, 139(41): 52994. |
39 | Hayek A, Alsamah A, Qasem E A, et al. Effect of pendent bulky groups on pure- and sour mixed-gas permeation properties of triphenylamine-based polyimides[J]. Separation and Purification Technology, 2019, 227: 115713. |
40 | Castro-Blanco R A, Rojas-Rodríguez M, Hernández A, et al. Aromatic polyimides and copolyimides containing bulky t-butyltriphenylmethane units[J]. Polymer Bulletin, 2020, 77(10): 5103-5125. |
41 | Ghanem B S, Swaidan R, Litwiller E, et al. Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation[J]. Advanced Materials, 2014, 26(22): 3688-3692. |
42 | Cho Y J, Park H B. High performance polyimide with high internal free volume elements[J]. Macromolecular Rapid Communications, 2011, 32(7): 579-586. |
43 | Alaslai N, Ma X H, Ghanem B, et al. Synthesis and characterization of a novel microporous dihydroxyl-functionalized triptycene-diamine-based polyimide for natural gas membrane separation[J]. Macromolecular Rapid Communications, 2017, 38(18): 1700303. |
44 | Luo S J, Liu Q, Zhang B H, et al. Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation[J]. Journal of Membrane Science, 2015, 480: 20-30. |
45 | Ye C, Luo C, Ji W H, et al. Significantly enhanced gas separation properties of microporous membranes by precisely tailoring their ultra-microporosity through bromination/debromination[J]. Chemical Engineering Journal, 2023, 451: 138513. |
46 | Li K H, Zhu Z Y, Dong H, et al. Bottom up approach to study the gas separation properties of PIM-PIs and its derived CMSMs by isomer monomers[J]. Journal of Membrane Science, 2021, 635: 119519. |
47 | Zhao W, Zhang J W, Liu C Y, et al. Fine-tuning gas separation performance of intrinsic microporous polyimide by the regulation of atomic-level halogen substitution[J]. Journal of Membrane Science, 2024, 692: 122317. |
48 | Fan F X, Sun Y C, Zhao Q Z, et al. Fluorinated-cardo-based Co-polyimide membranes with enhanced selectivity for CO2 separation[J]. Separation and Purification Technology, 2023, 324: 124511. |
49 | Ghanem B S, McKeown N B, Budd P M, et al. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides[J]. Macromolecules, 2009, 42(20): 7881-7888. |
50 | Rogan Y, Starannikova L, Ryzhikh V, et al. Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity[J]. Polymer Chemistry, 2013, 4(13): 3813-3820. |
51 | Zhuang Y B, Seong J G, Do Y S, et al. High-strength, soluble polyimide membranes incorporating Tröger's base for gas separation[J]. Journal of Membrane Science, 2016, 504: 55-65. |
52 | Wang A, Liao J Y, Wu X, et al. PI@TB blend membranes containing amorphous carbon for gas separation[J]. Separation and Purification Technology, 2024, 329: 125105. |
53 | Carta M, Malpass-Evans R, Croad M, et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307. |
54 | Kang S Y, Zhang Z G, Wu L, et al. Synthesis and gas separation properties of polyimide membranes derived from oxygencyclic pseudo-Tröger's base[J]. Journal of Membrane Science, 2021, 637: 119604. |
55 | Hu X F, Lee W H, Bae J Y, et al. Highly permeable polyimides incorporating Tröger's base (TB) units for gas separation membranes[J]. Journal of Membrane Science, 2020, 615: 118533. |
56 | Hu X F, Mu H L, Miao J, et al. Synthesis and gas separation performance of intrinsically microporous polyimides derived from sterically hindered binaphthalenetetracarboxylic dianhydride[J]. Polymer Chemistry, 2020, 11(25): 4172-4179. |
57 | Deng G X, Luo J Z, Liu S, et al. Molecular design and characterization of new polyimides based on binaphthyl-ether diamines for gas separation[J]. Separation and Purification Technology, 2020, 235: 116218. |
58 | Shrestha B B, Wakimoto K, Wang Z G, et al. A facile synthesis of contorted spirobisindane-diamine and its microporous polyimides for gas separation[J]. RSC Advances, 2018, 8(12): 6326-6330. |
59 | Chen H Q, Dai F N, Wang M X, et al. Preparation and gas separation properties of spirobisbenzoxazole-based polyimides[J]. European Polymer Journal, 2022, 173: 111231. |
60 | Ji W H, Li K H, Shi W X, et al. The effect of chain rigidity and microporosity on the sub-ambient temperature gas separation properties of intrinsic microporous polyimides[J]. Journal of Membrane Science, 2021, 635: 119439. |
61 | Tong X H, Wang S L, Dai J N, et al. Synthesis and gas separation properties of aromatic polyimides containing noncoplanar rigid sites[J]. ACS Applied Polymer Materials, 2022, 4(8): 6265-6275. |
62 | Hossain I, Nam S Y, Rizzuto C, et al. PIM-polyimide multiblock copolymer-based membranes with enhanced CO2 separation performances[J]. Journal of Membrane Science, 2019, 574: 270-281. |
63 | Guo H L, Hu X F, Zheng T Y, et al. Synthesis and gas separation performance of Tröger's base-containing polyimides derived from 9,9-bis(trifluoromethyl)-2,3,6,7-xanthenetetracarboxylic dianhydride [J]. European Polymer Journal, 2023, 193: 112100. |
64 | Abdulhamid M A, Lai H W H, Wang Y G, et al. Microporous polyimides from ladder diamines synthesized by facile catalytic arene-norbornene annulation as high-performance membranes for gas separation[J]. Chemistry of Materials, 2019, 31(5): 1767-1774. |
65 | Guo H L, Hu X F, Wang Z, et al. Intrinsically microporous polyimides from p-phenylenediamine with fused cyclopentyl substituents for membrane-based gas separation[J]. Separation and Purification Technology, 2023, 316: 123690. |
66 | Yuan P, Zhang M R, Pang Y Y, et al. Intrinsically microporous polyimides from norbornyl bis-benzocyclobutene-containing diamines and rigid dianhydrides for membrane-based gas separation[J]. ACS Applied Polymer Materials, 2023, 5(2): 1420-1429. |
67 | Hossain I, Al Munsur A, Kim T H. A facile synthesis of (PIM-polyimide)-(6FDA-durene-polyimide) copolymer as novel polymer membranes for CO2 separation[J]. Membranes, 2019, 9(9): 113. |
68 | Li F F, Zhang C L, Weng Y X. Preparation and gas separation properties of triptycene-based microporous polyimide[J]. Macromolecular Chemistry and Physics, 2019, 220(10): 1900047. |
69 | Hu X F, Lee W H, Bae J, et al. Thermally rearranged polybenzoxazole copolymers incorporating Tröger's base for high flux gas separation membranes[J]. Journal of Membrane Science, 2020, 612: 118437. |
70 | Zhang Y, Lee W H, Seong J G, et al. Effect of structural isomerism on physical and gas transport properties of Tröger's base-based polyimides[J]. Polymer, 2022, 239: 124412. |
71 | Rogan Y, Malpass-Evans R, Carta M, et al. A highly permeable polyimide with enhanced selectivity for membrane gas separations[J]. Journal of Materials Chemistry A, 2014, 2(14): 4874-4877. |
72 | Hu X F, Lee W H, Zhao J Y, et al. Thermally rearranged polymer membranes containing highly rigid biphenyl ortho-hydroxyl diamine for hydrogen separation[J]. Journal of Membrane Science, 2020, 604: 118053. |
[1] | Haowen LI, Hao LAN, Youdan ZHENG, Yonghui SUN, Zixin YANG, Qianshi SONG, Xiaohan WANG. Pyrolysis and coking behavior of typical liquid hydrocarbon fuels in hot pipe [J]. CIESC Journal, 2024, 75(2): 626-636. |
[2] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[3] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[4] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[5] | Jinpeng ZHANG, Qiang WANG, Yanmei WANG, Shu YAN, Jianbo WU, Hui ZHANG, Hongcun BAI. Molecular structure evolution characteristics and comparative analysis of Ningxia QH and YCW coal with nickel based oxygen carriers during chemical looping combustion [J]. CIESC Journal, 2023, 74(10): 4252-4266. |
[6] | Jiaming WANG, Xuehua RUAN, Gaohong HE. Research progress of membrane separation materials for different industrial CO2-containing mixtures [J]. CIESC Journal, 2022, 73(8): 3417-3432. |
[7] | Guang YANG, Xin CHENG, Zheng WANG, Ye WANG, Liangjun ZHANG, Jingyi WU. Analytical prediction model of permeability for rarefied gas flow in porous structures with micro or nanopores [J]. CIESC Journal, 2022, 73(7): 2895-2901. |
[8] | Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels [J]. CIESC Journal, 2022, 73(7): 2757-2773. |
[9] | Xinxin ZENG, Huijuan BAI, Juan YU, Pei HUANG, Chao YANG, Junbo XU. Mesoscale structure and regulation of polyimide resin matrix composites for hypersonic aerospace [J]. CIESC Journal, 2022, 73(6): 2352-2369. |
[10] | Guixian LI, Ke WANG, Jian WANG, Wenliang MENG, Jingwei LI, Yong YANG, Zongliang FAN, Dongliang WANG, Huairong ZHOU. Optimal design of membrane separation process for capturing CO2 from flue gas of coal-fired power plant [J]. CIESC Journal, 2022, 73(11): 5065-5077. |
[11] | Xiaole HUANG, Fu YANG, Lei HAN, Xing NING, Ruiyu LI, Lingxiao DONG, Husheng CAO, Lei DENG, Defu CHE. 3D characterization of pore structure and seepage simulation of tar-rich coal (long flame coal) [J]. CIESC Journal, 2022, 73(11): 5078-5087. |
[12] | WU Zhongjie, LIU Zeyan, XIE Lianke, CUI Mei, HUANG Renliang. Preparation of hydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation and heavy metal ions adsorption [J]. CIESC Journal, 2021, 72(S1): 421-429. |
[13] | Yanhu YAO, Chen YANG, Bing ZHANG, Yonghong WU, Tonghua WANG. Preparation, structure and properties of carbon molecular sieving membranes enabled by hybridization of TiO2 sol [J]. CIESC Journal, 2021, 72(8): 4418-4424. |
[14] | WANG Shaoyu, MA Hanze, WU Hong, LIANG Xu, WANG Hongjian, ZHU Ziting, JIANG Zhongyi. Research advances of organic framework membranes in gas separation [J]. CIESC Journal, 2021, 72(7): 3488-3510. |
[15] | DU Juan, GONG Zhiqiang, HUANG Caoxing, LIANG Chen, YAO Shuangquan, LIU Yang. Resin adsorption - ultrafiltration synergistic separation of alkaline extracted hemicellulose from bagasse [J]. CIESC Journal, 2021, 72(4): 2139-2147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||