1 |
国家能源局. 国家能源局2023年一季度新闻发布会文字实录[EB/OL]. [2023-08-15]. .
|
|
National Energy Administration. Text transcript of the National Energy Administration's news release conference in the first quarter of 2023[EB/OL]. [2023-08-15]. .
|
2 |
Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661.
|
3 |
White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447.
|
4 |
Rogalev N, Rogalev A, Kindra V, et al. Review of closed SCO2 and semi-closed oxy-fuel combustion power cycles for multi-scale power generation in terms of energy, ecology and economic efficiency[J]. Energies, 2022, 15(23): 9226.
|
5 |
Wu D C, Wei M S, Tian R, et al. A review of flow and heat transfer characteristics of supercritical carbon dioxide under cooling conditions in energy and power systems[J]. Energies, 2022, 15(23): 8785.
|
6 |
Marchionni M, Bianchi G, Tassou S A. Review of supercritical carbon dioxide (sCO2) technologies for high-grade waste heat to power conversion[J]. SN Applied Sciences, 2020, 2(4): 611.
|
7 |
孙铭泽, 马宁, 李浩然, 等. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
|
|
Sun M Z, Ma N, Li H R, et al. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium[J]. CIESC Journal, 2022, 73(3): 1379-1388.
|
8 |
Yin J M, Zheng Q Y, Peng Z R, et al. Review of supercritical CO2 power cycles integrated with CSP[J]. International Journal of Energy Research, 2020, 44(3): 1337-1369.
|
9 |
Fan Y H, Tang G H, Li X L, et al. General and unique issues at multiple scales for supercritical carbon dioxide power system: a review on recent advances[J]. Energy Conversion and Management, 2022, 268: 115993.
|
10 |
Xu J L, Liu C, Sun E H, et al. Perspective of S-CO2 power cycles[J]. Energy, 2019, 186: 115831.
|
11 |
Crespi F, Gavagnin G, Sánchez D, et al. Supercritical carbon dioxide cycles for power generation: a review[J]. Applied Energy, 2017, 195: 152-183.
|
12 |
Dunham M T, Iverson B D. High-efficiency thermodynamic power cycles for concentrated solar power systems[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 758-770.
|
13 |
Dyreby J, Klein S, Nellis G, et al. Design considerations for supercritical carbon dioxide Brayton cycles with recompression[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(10): 101701.
|
14 |
Reyes-Belmonte M A, Sebastián A, Romero M, et al. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant[J]. Energy, 2016, 112: 17-27.
|
15 |
Zheng N, Li Z Y, Fang J B, et al. Supercritical CO2 mixture Brayton cycle with floating critical points for concentrating solar power application: concept and thermodynamic analysis[J]. Energy Conversion and Management, 2023, 284: 116989.
|
16 |
Al-Sulaiman F A, Atif M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower[J]. Energy, 2015, 82: 61-71.
|
17 |
赵柄锡, 袁奇, 朱光宇. 多目标超临界CO2循环设计与优化[J]. 中国电机工程学报, 2018, 38(7): 2046-2054, 2219.
|
|
Zhao B X, Yuan Q, Zhu G Y. Multi-objective designing and optimization of Rankine cycle using supercritical CO2 [J]. Proceedings of the CSEE, 2018, 38(7): 2046-2054, 2219.
|
18 |
Zhou T, Liu Z X, Li X J, et al. Thermodynamic design space data-mining and multi-objective optimization of SCO2 Brayton cycles[J]. Energy Conversion and Management, 2021, 249: 114844.
|
19 |
Liang Y Z, Chen J S, Yang Z, et al. Economic-environmental evaluation and multi-objective optimization of supercritical CO2 based-central tower concentrated solar power system with thermal storage[J]. Energy Conversion and Management, 2021, 238: 114140.
|
20 |
Ma Y N, Hu P, Jia C Q, et al. Thermo-economic analysis and multi-objective optimization of supercritical Brayton cycles with CO2-based mixtures[J]. Applied Thermal Engineering, 2023, 219: 119492.
|
21 |
余廷芳, 宋凌. 超临界CO2布雷顿循环余热回收系统性能分析与优化[J]. 浙江大学学报(工学版), 2023, 57(2): 404-414.
|
|
Yu T F, Song L. Performance analysis and optimization of supercritical CO2 Brayton cycle waste heat recovery system[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(2): 404-414.
|
22 |
曹越, 陈然璟, 展君, 等. 基于神经网络的燃气-超临界CO2联合循环变工况特性快速预测及优化[J]. 中国电机工程学报, 2023, 43(11): 4178-4190.
|
|
Cao Y, Chen R J, Zhan J, et al. Rapid prediction and optimization for off-design performance of gas and supercritical carbon dioxide combined cycle based on neural network[J]. Proceedings of the CSEE, 2023, 43(11): 4178-4190.
|
23 |
肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应用研究, 2011, 28(3): 805-808, 827.
|
|
Xiao X W, Xiao D, Lin J G, et al. Overview on multi-objective optimization problem research[J]. Application Research of Computers, 2011, 28(3): 805-808, 827.
|
24 |
Li Q, Erqi E, Qiu Y, et al. Conceptual design of novel He-SCO2 Brayton cycles for ultra-high-temperature concentrating solar power[J]. Energy Conversion and Management, 2022, 260: 115618.
|
25 |
Wang K, Li M J, Guo J Q, et al. A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants[J]. Applied Energy, 2018, 212: 109-121.
|
26 |
Li H, Su W, Cao L Y, et al. Preliminary conceptual design and thermodynamic comparative study on vapor absorption refrigeration cycles integrated with a supercritical CO2 power cycle[J]. Energy Conversion and Management, 2018, 161: 162-171.
|
27 |
Tang J R, Zhang Q G, Zhang Z P, et al. Development and performance assessment of a novel combined power system integrating a supercritical carbon dioxide Brayton cycle with an absorption heat transformer[J]. Energy Conversion and Management, 2022, 251: 114992.
|
28 |
Qiu Y, Erqi E, Li Q. Triple-objective optimization of SCO2 Brayton cycles for next-generation solar power tower[J]. Energies, 2023, 16(14): 5316.
|
29 |
Lemmon E, McLinden M, Huber M. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, version 9.1[DB/OL]. Gaithersburg, MD: Natl Std. Ref. Data Series (NIST NSRDS), National Institute of Standards and Technology, 2013[2024-01-13]. .
|
30 |
Neises T, Turchi C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications[J]. Energy Procedia, 2014, 49: 1187-1196.
|
31 |
Kulhánek M, Dostál V. Thermodynamic analysis and comparison of supercritical carbon dioxide cycles[C]//Proceedings of Supercritical CO2 Power Cycle Symposium. Boulder, Colorado, USA, 2011.
|
32 |
Mecheri M, Le Moullec Y. Supercritical CO2 Brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771.
|
33 |
Yang J Z, Yang Z, Duan Y Y. Part-load performance analysis and comparison of supercritical CO2 Brayton cycles[J]. Energy Conversion and Management, 2020, 214: 112832.
|
34 |
Na S I, Kim M S, Baik Y J, et al. Optimal allocation of heat exchangers in a supercritical carbon dioxide power cycle for waste heat recovery[J]. Energy Conversion and Management, 2019, 199: 112002.
|
35 |
Mohagheghi M, Kapat J. Thermodynamic optimization of recuperated S-CO2 Brayton cycles for solar tower applications[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. San Antonio, Texas, USA, 2013.
|
36 |
Carlson M D, Middleton B M, Ho C K. Techno-economic comparison of solar-driven SCO2 Brayton cycles using component cost models baselined with vendor data and estimates[C]//Proceedings of ASME 2017 11th International Conference on Energy Sustainability Collocated with the ASME 2017 Power Conference Joint with ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. Charlotte, North Carolina, USA, 2017
|
37 |
Engineering Chemical. 2023 CEPCI updates: July (prelim.) and June (final)[EB/OL]. [2023-10-15]. .
|
38 |
Khodaei E, Yari M, Mohammad S Mahmoudi S. Thermoeconomic optimization for a solar power generating system capable of storing energy by using calcium looping process[J]. Energy Conversion and Management, 2023, 293: 117403.
|