CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2109-2122.DOI: 10.11949/0438-1157.20240146
• Reviews and monographs • Previous Articles Next Articles
Bin SU1,2(), Haowei DONG1(
), Zhenmin LUO1,2(
), Jun DENG1,2, Tao WANG1,2, Fangming CHENG1,2
Received:
2024-01-30
Revised:
2024-04-09
Online:
2024-07-03
Published:
2024-06-25
Contact:
Haowei DONG, Zhenmin LUO
苏彬1,2(), 董浩伟1(
), 罗振敏1,2(
), 邓军1,2, 王涛1,2, 程方明1,2
通讯作者:
董浩伟,罗振敏
作者简介:
苏彬(1993—),男,博士,讲师,su_bin@xust.edu.cn
基金资助:
CLC Number:
Bin SU, Haowei DONG, Zhenmin LUO, Jun DENG, Tao WANG, Fangming CHENG. Research progress on explosion dynamic characteristics and mechanism of hybrid mixtures[J]. CIESC Journal, 2024, 75(6): 2109-2122.
苏彬, 董浩伟, 罗振敏, 邓军, 王涛, 程方明. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75(6): 2109-2122.
年份 | 地点 | 物质种类 | 事故后果 |
---|---|---|---|
1985 | 中国辽宁省沈阳市 | 煤尘、瓦斯 | 死亡36人,受伤13人 |
1989 | 美国德克萨斯州 | 聚乙烯粉尘、乙烯、异丁烷 | 死亡23人,受伤314人 |
1993 | 中国河北省磁县 | 煤尘、瓦斯 | 死亡25人,受伤10人 |
2002 | 中国辽宁省 | 聚乙烯粉尘、乙烯 | 死亡8人,受伤19人 |
2013 | 中国新疆昌吉回族自治州 | 煤尘、瓦斯 | 死亡22人,受伤1人 |
2014 | 中国江苏省昆山市 | 铝粉、氢气 | 死亡97人,受伤163人 |
2016 | 中国重庆市 | 煤尘、瓦斯 | 死亡33人,受伤1人 |
2018 | 中国北京市 | 镁粉、氢气 | 死亡3人,受伤0人 |
2019 | 中国陕西省神木市 | 煤尘、瓦斯 | 死亡21人,受伤10人 |
2019 | 中国江苏省昆山市 | 镁合金粉、氢气 | 死亡7人,受伤5人 |
2021 | 中国江苏省南京市 | 铝粉、镁粉、镁铝合金粉、氢气 | 死亡2人,受伤9人 |
2021 | 俄罗斯西伯利亚联邦区 | 煤尘、瓦斯 | 死亡52人,受伤63人 |
2023 | 中国广东省东莞市 | 铝合金粉、氢气 | 死亡0人,受伤3人 |
2023 | 中国上海市 | 铝镁合金粉、氢气 | 死亡2人,受伤2人 |
2024 | 中国江苏省常州市 | 铝合金粉、氢气 | 死亡8人,受伤8人 |
Table 1 Explosion accident statistics of hybrid mixture
年份 | 地点 | 物质种类 | 事故后果 |
---|---|---|---|
1985 | 中国辽宁省沈阳市 | 煤尘、瓦斯 | 死亡36人,受伤13人 |
1989 | 美国德克萨斯州 | 聚乙烯粉尘、乙烯、异丁烷 | 死亡23人,受伤314人 |
1993 | 中国河北省磁县 | 煤尘、瓦斯 | 死亡25人,受伤10人 |
2002 | 中国辽宁省 | 聚乙烯粉尘、乙烯 | 死亡8人,受伤19人 |
2013 | 中国新疆昌吉回族自治州 | 煤尘、瓦斯 | 死亡22人,受伤1人 |
2014 | 中国江苏省昆山市 | 铝粉、氢气 | 死亡97人,受伤163人 |
2016 | 中国重庆市 | 煤尘、瓦斯 | 死亡33人,受伤1人 |
2018 | 中国北京市 | 镁粉、氢气 | 死亡3人,受伤0人 |
2019 | 中国陕西省神木市 | 煤尘、瓦斯 | 死亡21人,受伤10人 |
2019 | 中国江苏省昆山市 | 镁合金粉、氢气 | 死亡7人,受伤5人 |
2021 | 中国江苏省南京市 | 铝粉、镁粉、镁铝合金粉、氢气 | 死亡2人,受伤9人 |
2021 | 俄罗斯西伯利亚联邦区 | 煤尘、瓦斯 | 死亡52人,受伤63人 |
2023 | 中国广东省东莞市 | 铝合金粉、氢气 | 死亡0人,受伤3人 |
2023 | 中国上海市 | 铝镁合金粉、氢气 | 死亡2人,受伤2人 |
2024 | 中国江苏省常州市 | 铝合金粉、氢气 | 死亡8人,受伤8人 |
时间 | 爆炸下限预测模型 | 特点 | 文献 |
---|---|---|---|
1985年 | 首次将MEC、LEL与两相体系中的气体体积分数和粉尘质量浓度联立 | [ | |
2012年 | 随着粉体浓度增加,HMEC并非线性降低,符合二阶曲线方程的规律 | [ | |
2015年 | 引入点火能量与湍流两个影响因素,并结合爆炸指数K | [ | |
2018年 | 引入极限因子η,关联了粉体与气体的最大爆炸压力和爆炸指数 | [ |
Table 2 Prediction model of lower explosive limit of hybrid mixture
时间 | 爆炸下限预测模型 | 特点 | 文献 |
---|---|---|---|
1985年 | 首次将MEC、LEL与两相体系中的气体体积分数和粉尘质量浓度联立 | [ | |
2012年 | 随着粉体浓度增加,HMEC并非线性降低,符合二阶曲线方程的规律 | [ | |
2015年 | 引入点火能量与湍流两个影响因素,并结合爆炸指数K | [ | |
2018年 | 引入极限因子η,关联了粉体与气体的最大爆炸压力和爆炸指数 | [ |
时间 | 最小点火能预测模型 | 特点 | 文献 |
---|---|---|---|
1998年 | 采用Bartknecht的测试结果提出半经验公式 | [ | |
2012年 | 低于粉体爆炸下限后对MIE预测进行了修正 | [ | |
2016年 | 提出直径、绝热火焰温度和临界点火内核的影响 | [ |
Table 3 Prediction model of minimum ignition energy of hybrid mixture
时间 | 最小点火能预测模型 | 特点 | 文献 |
---|---|---|---|
1998年 | 采用Bartknecht的测试结果提出半经验公式 | [ | |
2012年 | 低于粉体爆炸下限后对MIE预测进行了修正 | [ | |
2016年 | 提出直径、绝热火焰温度和临界点火内核的影响 | [ |
1 | Gan B, Li B, Jiang H P, et al. Ethylene/polyethylene hybrid explosions(part 1): Effects of ethylene concentrations on flame propagations[J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 93-102. |
2 | 刘贞堂, 周西方, 林松, 等. 我国工业粉尘爆炸事故统计及趋势分析[J]. 消防科学与技术, 2020, 39(6): 879-882. |
Liu Z T, Zhou X F, Lin S, et al. Statistics and trend analysis of industrial dust explosion accidents in China[J]. Fire Science and Technology, 2020, 39(6): 879-882. | |
3 | 陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析[J]. 中国安全科学学报, 2022, 32(8): 76-83. |
Chen G, Zhang X L, Xu S, et al. Statistical analysis on dust explosion accidents in China from 2005 to 2020[J]. China Safety Science Journal, 2022, 32(8): 76-83. | |
4 | 张晓蕾, 陈刚, 徐帅, 等. 中美粉尘爆炸事故统计和管理体系对比研究[J]. 安全与环境学报, 2023, 23(8): 2769-2779. |
Zhang X L, Chen G, Xu S, et al. Comparative study on dust explosion accident statistics and management system between China and the United States[J]. Journal of Safety and Environment, 2023, 23(8): 2769-2779. | |
5 | 陈爱英, 王琪, 安然. 浅谈粉尘爆炸特征及事故预防措施[J]. 化工管理, 2014(23): 57. |
Chen A Y, Wang Q, An R. A brief discussion on the characteristics of dust explosion and accident prevention measures[J]. Chemical Management, 2014(23): 57. | |
6 | 孙会利. 可燃气体/粉尘两相爆炸特性实验研究[D]. 大连: 大连理工大学, 2017. |
Sun H L. Experimental investigation into the explosibility of hybrid mixtures of flammable gas and dust[D]. Dalian: Dalian University of Technology, 2017. | |
7 | 费金彪, 文虎. 大佛寺矿煤自燃多参数预报指标研究分析[J]. 煤炭技术, 2017, 36(12): 111-113. |
Fei J B, Wen H. Research and analysis on multi-parameter prediction index of coal spontaneous combustion in dafosi coal mine[J]. Coal Technology, 2017, 36(12): 111-113. | |
8 | 李永怀, 蔡周全. 一起特别重大瓦斯煤尘爆炸事故分析[J]. 煤矿安全, 2010, 41(8): 114-116. |
Li Y H, Cai Z Q. Analysis of a particularly serious gas and coal dust explosion accident[J]. Safety in Coal Mines, 2010, 41(8): 114-116. | |
9 | 赵钰. 低密度聚乙烯粉尘/乙烯混合物爆炸特性及惰化研究[D]. 北京: 北京石油化工学院, 2020. |
Zhao Y. Study on explosion characteristics and inertion of low-density polyethylene dust/ethylene gas hybrid mixture[D]. Beijing: Beijing Institute of Petrochemical Technology, 2020. | |
10 | 叶亚明, 梁峻, 江湖一佳, 等. 镁粉尘燃烧爆炸研究进展[J]. 消防科学与技术, 2019, 38(7): 921-925. |
Ye Y M, Liang J, Jianghu Y J, et al. Research progress on Mg dust combustion explosion[J]. Fire Science and Technology, 2019, 38(7): 921-925. | |
11 | 李雨成, 富健涛, 奇佳民, 等. 密闭空间镁粉爆炸压力特性研究[J]. 爆破, 2018, 35(3): 114-119. |
Li Y C, Fu J T, Ji J M, et al. Pressure characteristics of magnesium powder explosion in confined space[J]. Blasting, 2018, 35(3): 114-119. | |
12 | Tsai Y T, Huang G T, Zhao J Q, et al. Dust cloud explosion characteristics and mechanisms in MgH2-based hydrogen storage materials[J]. AIChE Journal, 2021, 67(8): e17302. |
13 | 汤其建, 秦汝祥, 戴广龙. 索特平均直径对煤粉及其在瓦斯气氛下爆炸特性的影响[J]. 煤炭学报, 2021, 46(2): 489-497. |
Tang Q J, Qin R X, Dai G L. Effect of Sauter mean diameter of coal dust on its explosibility with and without methane gas[J]. Journal of China Coal Society, 2021, 46(2): 489-497. | |
14 | 陈彪, 冯萧, 张皓天, 等. 超细水雾抑制甲烷-煤尘复合爆炸的实验研究[J]. 消防科学与技术, 2021, 40(7): 1046-1051. |
Chen B, Feng X, Zhang H T, et al. Experimental study on suppression of methane-coal dust compound explosion by ultra-fine water mist[J]. Fire Science and Technology, 2021, 40(7): 1046-1051. | |
15 | Wang Y, Qi Y Q, Gan X Y, et al. Influences of coal dust components on the explosibility of hybrid mixtures of methane and coal dust[J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104222. |
16 | Ji W T, Yu J L, Yu X Z, et al. Experimental investigation into the vented hybrid mixture explosions of lycopodium dust and methane[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 102-111. |
17 | 覃小玲, 李晓泉. 粮食粉尘爆炸事故统计分析[J]. 工业安全与环保, 2020, 46(5): 78-82. |
Qin X L, Li X Q. Statistical analysis of accidents grain dust explosion[J]. Industrial Safety and Environmental Protection, 2020, 46(5): 78-82. | |
18 | 甘波, 高伟, 张新燕, 等. 甲烷浓度对PMMA/甲烷混合爆炸下限及预热区厚度的影响分析[J]. 爆炸与冲击, 2019, 39(2): 188-195. |
Gan B, Gao W, Zhang X Y, et al. Effect of methane concentration on lower explosive limit of PMMA/methane mixture and thickness of preheating zone[J]. Explosion and Shock Waves, 2019, 39(2): 188-195. | |
19 | 景国勋, 段振伟, 程磊, 等. 瓦斯煤尘爆炸特性及传播规律研究进展[J]. 中国安全科学学报, 2009, 19(4): 67-72. |
Jing G X, Duan Z W, Cheng L, et al. Research progress in explosion characteristics and spread law of gas and coal dust[J]. China Safety Science Journal, 2009, 19(4): 67-72. | |
20 | 蔡周全, 罗振敏, 程方明. 瓦斯煤尘爆炸传播特性的实验研究[J]. 煤炭学报, 2009, 34(7): 938-941. |
Cai Z Q, Luo Z M, Cheng F M. Experimental study on propagation characteristics of gas/coal dust explosion[J]. Journal of China Coal Society, 2009, 34(7): 938-941. | |
21 | 祁畅. 甲烷、丙烷对PMMA、ABS粉尘爆炸特性的影响研究[D]. 徐州: 中国矿业大学, 2020. |
Qi C. Influences of methane and propane on the explosion characteristics of PMMA and ABS dust[D]. Xuzhou: China University of Mining and Technology, 2020. | |
22 | Yu X, Zhang Z, Yan X, et al. Explosion characteristics and combustion mechanism of hydrogen/tungsten dust hybrid mixtures[J]. Fuel, 2023, 332: 126017. |
23 | Gan B, Li B, Jiang H P, et al. Ethylene/polyethylene hybrid explosions(part 2): Effects of polyethylene particle size distributions on flame propagations[J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 134-143. |
24 | Bartknecht W. Explosions[M]. Berlin: Springer Berlin Heidelberg, 1981. |
25 | Cashdollar K L, Hertzberg M. 20-L explosibility test chamber for dusts and gases[J]. Review of Scientific Instruments, 1985, 56(4): 596-602. |
26 | Garcia-Agreda A, Di Benedetto A, Russo P, et al. Dust/gas mixtures explosion regimes[J]. Powder Technology, 2011, 205(1/2/3): 81-86. |
27 | Di Benedetto A, Garcia-Agreda A, Russo P, et al. Combined effect of ignition energy and initial turbulence on the explosion behavior of lean gas/dust-air mixtures[J]. Industrial & Engineering Chemistry Research, 2012, 51(22): 7663-7670. |
28 | Sanchirico R, Russo P, Saliva A, et al. Explosion of lycopodium-nicotinic acid-methane complex hybrid mixtures[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 505-508. |
29 | Pang L, Cao J J, Zhao Y, et al. Minimum ignition energy of LDPE dust/ethylene hybrid mixture[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104546. |
30 | Addai E K, Gabel D, Krause U. Explosion characteristics of three component hybrid mixtures[J]. Process Safety and Environmental Protection, 2015, 98: 72-81. |
31 | 王磊, 李润之. 瓦斯、煤尘共存条件下爆炸极限变化规律实验研究[J]. 中国矿业, 2016, 25(4): 87-90. |
Wang L, Li R Z. Experimental study on the explosion limits change laws under gas and coal dust coexisting conditions[J]. China Mining Magazine, 2016, 25(4): 87-90. | |
32 | 李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限[J]. 爆炸与冲击, 2018, 38(4): 913-917. |
Li R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust[J]. Explosion and Shock Waves, 2018, 38(4): 913-917. | |
33 | 王者鹏. 低浓度瓦斯对煤尘爆炸下限的影响研究[J]. 煤矿安全, 2017, 48(2): 26-27, 32. |
Wang Z P. Study on influence of low concentration gas on lower explosive limit of coal dust[J]. Safety in Coal Mines, 2017, 48(2): 26-27, 32. | |
34 | 王燕, 齐英全, 温小萍, 等. 煤尘组分对瓦斯/煤尘复合爆炸下限的影响研究[J]. 煤炭科学技术, 2020, 48(2): 125-130. |
Wang Y, Qi Y Q, Wen X P, et al. Influence study of coal dust composition on the lower explosion limit of hybrid mixture of gas and coal dust[J]. Coal Science and Technology, 2020, 48(2): 125-130. | |
35 | Yu L F, Li G, Liu W C, et al. Experimental investigations on ignition sensitivity of hybrid mixtures of oil shale dust and syngas[J]. Fuel, 2017, 210: 1-7. |
36 | Jiang J J, Liu Y, Mashuga C V, et al. Validation of a new formula for predicting the lower flammability limit of hybrid mixtures[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 52-58. |
37 | Ji W T, Wang Y, Yang J J, et al. Methods to predict variations of lower explosion limit associated with hybrid mixtures of flammable gas and dust[J]. Fuel, 2022, 310: 122138. |
38 | Bartknecht W. Explosions: Course, Prevention, Protection[M]. Berlin: Springer Science & Business Media,2012. |
39 | 张欣, 张琰, 任常兴, 等. 可燃气体最小点火能测试方法与影响因素探讨[J]. 消防科学与技术, 2020, 39(4): 431-434. |
Zhang X, Zhang Y, Ren C X, et al. Test method and influence analysis on the minimum ignition energy of flammable gas[J]. Fire Science and Technology, 2020, 39(4): 431-434. | |
40 | 王志宇, 杨遂军, 栾伟玲, 等. 粉尘云最小点火能测试技术综述[J]. 科学技术与工程, 2023, 23(4): 1357-1369. |
Wang Z Y, Yang S J, Luan W L, et al. Review on the test of minimum ignition energies of dust clouds[J]. Science Technology and Engineering, 2023, 23(4): 1357-1369. | |
41 | Eckhoff R K. Understanding dust explosions. The role of powder science and technology[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1): 105-116. |
42 | Britton L G. Short communication: estimating the minimum ignition energy of hybrid mixtures[J]. Process Safety Progress, 1998, 17(2): 124-126. |
43 | 王陈. 甲烷对煤尘爆炸特性影响的研究[C]//工业粉尘防爆与治理-全国工业粉尘防爆与治理学术讨论会论文集. 北京: 中国科学技术出版社, 1990: 449-457. |
Wang C. Study on the effect of methane on the explosion characteristics of coal dust[C]//Industrial Dust Explosion Prevention and Control-Proceedings of the National Symposium on Industrial Dust Explosion Prevention and Control. Beijing: Science and Technology Press of China, 1990: 449-457. | |
44 | 何朝远. 瓦斯煤尘共存条件下爆炸危险性的研究[J]. 煤矿安全, 1996, 27(12): 5-6, 22. |
He C Y. Study on explosion risk under the coexistence of gas and coal dust[J]. Safety In Coal Mines, 1996, 27(12): 5-6, 22. | |
45 | 司荣军, 牛宜辉, 王磊, 等. 煤矿瓦斯煤尘爆炸的动力学特性研究进展[J]. 工程爆破, 2023, 29(1): 30-39. |
Si R J, Niu Y H, Wang L, et al. Research progress on dynamic characteristics of coal mine gas and dust explosion[J]. Engineering Blasting, 2023, 29(1): 30-39. | |
46 | Addai E K, Gabel D, Krause U. Models to estimate the minimum ignition temperature of dusts and hybrid mixtures[J]. Journal of Hazardous Materials, 2016, 304: 73-83. |
47 | 李刚, 平洋, 吴卫卫, 等. 瓦斯煤粉耦合体系着火实验研究[J]. 煤炭学报, 2013, 38(8): 1388-1391. |
Li G, Ping Y, Wu W W, et al. Experimental study on the ignition of the coupling system of coal gas and coal dust[J]. Journal of China Coal Society, 2013, 38(8): 1388-1391. | |
48 | Addai E K, Gabel D, Krause U. Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents[J]. Journal of Hazardous Materials, 2016, 301: 314-326. |
49 | 徐伟巍, 熊静文, 刘柏清, 等. 酒精蒸气/烟草粉尘两相混合体系最小点火能试验研究[J]. 火灾科学, 2022, 31(3): 137-142. |
Xu W W, Xiong J W, Liu B Q, et al. Experimental study on the minimum ignition energy of hybrid mixtures of alcohol vapor and tobacco dust[J]. Fire Safety Science, 2022, 31(3): 137-142. | |
50 | Khalili I, Dufaud O, Poupeau M, et al. Ignition sensitivity of gas-vapor/dust hybrid mixtures[J]. Powder Technology, 2012, 217: 199-206. |
51 | Addai E K, Gabel D, Kamal M, et al. Minimum ignition energy of hybrid mixtures of combustible dusts and gases[J]. Process Safety and Environmental Protection, 2016, 102: 503-512. |
52 | 李延鸿. 粉尘爆炸的基本特征[J]. 科技情报开发与经济, 2005(14): 130-131. |
Li Y H. Basic features of the dust explosion[J]. Sci-Tech Information Development & Economy, 2005(14): 130-131. | |
53 | 纪文涛. 气粉两相混合体系爆炸及泄放特性研究[D]. 大连: 大连理工大学, 2018. |
Ji W T. Investigation on the explosibility and explosion venting characteristics of hybrid mixtures[D]. Dalian: Dalian University of Technology, 2018. | |
54 | Amyotte P R, Mintz K J, Pegg M J, et al. Laboratory investigation of the dust explosibility characteristics of three Nova Scotia coals[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(2): 102-109. |
55 | 许航. 水平管道内甲烷-煤尘复合爆炸压力研究[D]. 太原: 中北大学, 2013. |
Xu H. Research on methane-coal dust compound explosion pressure in horizontal pipe[D]. Taiyuan: North University of China, 2013. | |
56 | 游天龙, 谭迎新, 许航. 水平管道内甲烷-煤尘混合爆炸压力的研究[J]. 中北大学学报(自然科学版), 2014, 35(4): 449-452. |
You T L, Tan Y X, Xu H. Study on methane-coal dust explosion pressure in a horizontal pipeline[J]. Journal of North University of China (Natural Science Edition), 2014, 35(4): 449-452. | |
57 | 喻健良, 纪文涛, 孙会利, 等. 乙烯/聚乙烯两相体系爆炸特性[J]. 化工学报, 2017, 68(12): 4841-4847. |
Yu J L, Ji W T, Sun H L, et al. Explosibility of hybrid mixtures of ethylene and polyethelene dust[J]. CIESC Journal, 2017, 68(12): 4841-4847. | |
58 | 司荣军, 王春秋. 瓦斯对煤尘爆炸特性影响的实验研究[J]. 中国安全科学学报, 2006, 16(12): 86-91, 169. |
Si R J, Wang C Q. Experimental research on the influence of gas on the character coal dust explosion[J]. China Safety Science Journal, 2006, 16(12): 86-91, 169. | |
59 | Song S X, Cheng Y F, Meng X R, et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel[J]. Process Safety and Environmental Protection, 2019, 122: 281-287. |
60 | Niu Y H, Zhang L L, Shi B M. Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion[J]. Powder Technology, 2020, 361: 507-511. |
61 | Guo C W, Shao H, Jiang S G, et al. Effect of low-concentration coal dust on gas explosion propagation law[J]. Powder Technology, 2020, 367: 243-252. |
62 | Zhang L, Wang H Y, Chen C, et al. Experimental study to assess the explosion hazard of CH4/coal dust mixtures induced by high-temperature source surface[J]. Process Safety and Environmental Protection, 2021, 154: 60-71. |
63 | Liu Q M, Hu Y L, Bai C H, et al. Methane/coal dust/air explosions and their suppression by solid particle suppressing agents in a large-scale experimental tube[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 310-316. |
64 | 冯永安, 胡双启, 胡立双, 等. 基于20 L球形爆炸装置的甲烷煤尘混合爆炸实验[J]. 中国安全生产科学技术, 2012, 8(7): 16-19. |
Feng Y A, Hu S Q, Hu L S, et al. Coal dust/methane mixtures explosion experiment based on 20 L spherical explosive device[J]. Journal of Safety Science and Technology, 2012, 8(7): 16-19. | |
65 | 喻健良, 孙会利, 纪文涛, 等. 甲烷/石松子两相混合体系爆炸强度参数[J]. 爆炸与冲击, 2018, 38(1): 92-97. |
Yu J L, Sun H L, Ji W T, et al. Explosion severity parameters of hybrid mixture of methane and lycopodium dust[J]. Explosion and Shock Waves, 2018, 38(1): 92-97. | |
66 | Yu X Z, Yu J L, Wang C Y, et al. Experimental study on the overpressure and flame propagation of hybrid hydrogen/aluminum dust explosions in a square closed vessel[J]. Fuel, 2021, 285: 119222. |
67 | Ji W T, Gan X Y, Li L, et al. Prediction of the explosion severity of hybrid mixtures[J]. Powder Technology, 2022, 400: 117273. |
68 | Pico P, Ratkovich N, Muñoz F, et al. Analysis of the explosion behaviour of wheat starch/pyrolysis gases hybrid mixtures through experimentation and CFD-DPM simulations[J]. Powder Technology, 2020, 374: 330-347. |
69 | Yu X Z, Yu J L, Zhang X Y, et al. Combustion behaviors and residues characteristics in hydrogen/aluminum dust hybrid explosions[J]. Process Safety and Environmental Protection, 2020, 134: 343-352. |
70 | Denkevits A, Hoess B. Hybrid H2/Al dust explosions in Siwek sphere[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 509-521. |
71 | Dufaud O, Perrin L, Traore M, et al. Explosions of vapour/dust hybrid mixtures: a particular class[J]. Powder Technology, 2009, 190(1/2): 269-273. |
72 | Mittal M. Explosion characteristics of micron- and nano-size magnesium powders[J]. Journal of Loss Prevention in the Process Industries, 2014, 27: 55-64. |
73 | 凤文桢, 熊新宇, 高凯, 等. 点火延迟时间对镁粉尘云爆炸特性影响研究[J]. 消防科学与技术, 2021, 40(1): 25-28. |
Feng W Z, Xiong X Y, Gao K, et al. Influence of ignition delay time on explosion characteristics of magnesium dust cloud[J]. Fire Science and Technology, 2021, 40(1): 25-28. | |
74 | Li N, Zhang Y S, Guo R, et al. Effect of stearic acid coating on the explosion characteristics of aluminum dust[J]. Fuel, 2022, 320: 123880. |
75 | Choi K, Sakasai H, Nishimura K. Minimum ignition energies of pure magnesium powders due to electrostatic discharges and nitrogen's effect[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 144-146. |
76 | 秦友花, 陆守香, 于春红, 等. 障碍物与煤尘对气体火焰传播过程影响的实验研究[J]. 煤矿安全, 1999, 30(10): 41-43. |
Qin Y H, Lu S X, Yu C H, et al. The experimental study of influence of obstacles and coal on the flame propagation[J]. Safety in Coal Mines, 1999, 30(10): 41-43. | |
77 | 毕明树, 李江波. 密闭管内甲烷-煤粉复合爆炸火焰传播规律的实验研究[J]. 煤炭学报, 2010, 35(8): 1298-1302. |
Bi M S, Li J B. Flame propagation of methane-coal dust explosion in closed vessel[J]. Journal of China Coal Society, 2010, 35(8): 1298-1302. | |
78 | 牛芳, 刘庆明, 白春华, 等. 甲烷-煤尘爆炸物火焰传播特性[J]. 高压物理学报, 2012, 26(4): 455-461. |
Niu F, Liu Q M, Bai C H, et al. Flame propagation and combustion in methane-coal-air mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 455-461. | |
79 | 任少峰, 陈先锋, 王玉杰, 等. 无约束泄爆对甲烷/空气火焰传播特性影响的试验研究[J]. 中国安全科学学报, 2013, 23(4): 84-88. |
Ren S F, Chen X F, Wang Y J, et al. Experimental study on effect of unconstrained explosion venting on methane-air flame propagation characteristics[J]. China Safety Science Journal, 2013, 23(4): 84-88. | |
80 | 徐进生, 陈先锋, 李登科, 等. 甲烷/空气预混气体泄爆过程的动力学研究[J]. 工业安全与环保, 2013, 39(4): 22-24. |
Xu J S, Chen X F, Li D K, et al. Study on the dynamic characteristics of methane/air premixed explosion venting[J]. Industrial Safety and Environmental Protection, 2013, 39(4): 22-24. | |
81 | 景国勋, 邵泓源, 吴昱楼, 等. 半封闭管道内瓦斯煤尘爆炸火焰传播特性试验[J]. 安全与环境学报, 2020, 20(4): 1321-1326. |
Jing G X, Shao H Y, Wu Y L, et al. Experimental approach to the flame propagation features of the explosive gas and coal dust in the semi-enclosed pipeline[J]. Journal of Safety and Environment, 2020, 20(4): 1321-1326. | |
82 | 裴蓓, 朱知印, 余明高, 等. 瓦斯/煤尘爆炸初期复合火焰加速及灾害强化机制分析[J]. 工程热物理学报, 2021, 42(7): 1879-1886. |
Pei B, Zhu Z Y, Yu M G, et al. Analysis on the acceleration of composite flame and the strengthening mechanism of disaster in the initial stage of gas/coal dust explosion[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1879-1886. | |
83 | 谭迎新, 郭家鑫, 刘毅飞, 等. 惰性气体对煤层气-煤粉混合燃烧火焰的影响[J]. 测试技术学报, 2022, 36(6): 492-497. |
Tan Y X, Guo J X, Liu Y F, et al. Effect of inert gas on combustion flame of coalbed gas-coal dust mixture[J]. Journal of Test and Measurement Technology, 2022, 36(6): 492-497. | |
84 | 周永浩, 甘波, 姜海鹏, 等. 甲烷/煤尘复合爆炸火焰的传播特性[J]. 爆炸与冲击, 2022, 42(1): 167-175. |
Zhou Y H, Gan B, Jiang H P, et al. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion and Shock Waves, 2022, 42(1): 167-175. | |
85 | 于小哲. 氢气/铝粉混合体系爆炸特性及火焰传播机理研究[D]. 大连: 大连理工大学, 2020. |
Yu X Z. Explosion characteristics and flame propagation mechanism of hydrogen/aluminum dust hybrid mixtures[D]. Dalian: Dalian University of Technology, 2020. | |
86 | Wang H Y, Zhang Y W, Xu J D, et al. Experimental study on effect of dilute coal dust on gas explosion pressure/flame evolution process[J]. Powder Technology, 2022: 117450. |
87 | 李海涛, 陈晓坤, 邓军, 等. 湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟[J]. 煤炭学报, 2018, 43(6): 1769-1779. |
Li H T, Chen X K, Deng J, et al. Numerical simulation on the premix properties and explosion process of methane/coal dust mixture in a vertical pipeline under turbulent flow[J]. Journal of China Coal Society, 2018, 43(6): 1769-1779. | |
88 | 陈东梁, 孙金华, 刘义, 等. 甲烷/煤尘复合体系燃烧反应特性研究[J]. 工程热物理学报, 2008, 29(7): 1243-1247. |
Chen D L, Sun J H, Liu Y, et al. Study on combustion characteristics of methane/coal dust mixture[J]. Journal of Engineering Thermophysics, 2008, 29(7): 1243-1247. | |
89 | 陈东梁, 孙金华, 刘义, 等. 甲烷、煤尘复合体系燃烧特性及火焰结构的实验研究[J]. 自然科学进展, 2007, 17(4): 494-499. |
Chen D L, Sun J H, Liu Y, et al. Experimental study on combustion characteristics and flame structure of methane and coal dust composite system[J]. Progress in Natural Science, 2007, 17(4): 494-499. | |
90 | 刘静平, 杨振欣, 赵懿明, 等. 褐煤煤尘爆炸火焰传播特性及燃烧热分解机理研究[J]. 爆破器材, 2022, 51(6): 16-21. |
Liu J P, Yang Z X, Zhao Y M, et al. Study on flame propagation characteristics and combustion pyrolysis mechanism of lignite dust explosion[J]. Explosive Materials, 2022, 51(6): 16-21. | |
91 | Zhang Y, Cao W G, Rao G N, et al. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts[J]. Combustion Science and Technology, 2018, 190(10): 1850-1860. |
92 | 司荣军. 瓦斯煤尘爆炸研究现状及发展趋势[J]. 矿业安全与环保, 2014, 41(1): 72-75, 79. |
Si R J. Research status and development trend of gas and coal dust explosion[J]. Mining Safety & Environmental Protection, 2014, 41(1): 72-75, 79. | |
93 | 邓军, 屈姣, 王秋红. 煤矿瓦斯煤尘燃烧与爆炸研究现状及展望[J]. 煤矿现代化, 2014(5): 96-99. |
Deng J, Qu J, Wang Q H. Research status and development direction in combustion and explosion of gas and coal dust in coal mine[J]. Coal Mine Modernization, 2014(5): 96-99. | |
94 | Li H T, Zhai F E, Li S S, et al. Macromorphological features and formation mechanism of particulate residues from methane/air/coal dust gas-solid two-phase hybrid explosions: an approach for material evidence analysis in accident investigation[J]. Fuel, 2022, 315: 123209. |
95 | Li H T, Deng J, Chen X K, et al. Qualitative and quantitative characterisation for explosion severity and gaseous-solid residues during methane-coal particle hybrid explosions: an approach to estimating the safety degree for underground coal mines[J]. Process Safety and Environmental Protection, 2020, 141: 150-166. |
96 | Garcia-Agreda A, Benedetto A D, Russo P, et al. Dust/gas mixtures explosion regimes[J]. Powder Technology, 2011, 205: 81-86. |
97 | U I, Amosov S D. Combustion modes and mechanisms of high-temperature oxidation of magnesium in oxygen[J]. Combustion, Explosion and Shock Waves, 2004, 40: 275-284. |
98 | 曹泰岳, 张为华, 王宁飞. 轻金属颗粒燃烧理论研究进展[J]. 推进技术, 1996, 17(2): 82-87. |
Cao T Y, Zhang W H, Wang N F. Research progress of light metal particle combustion theory[J]. Journal of Propulsion Technology, 1996, 17(2): 82-87. | |
99 | 孙金华, 卢平, 刘义. 空气中悬浮金属微粒子的燃烧特性[J]. 南京理工大学学报(自然科学版), 2005, 29(5): 582-585, 622. |
Sun J H, Lu P, Liu Y. Combustion behavior of metal particles suspended in air[J]. Journal of Nanjing University of Science and Technology, 2005, 29(5): 582-585, 622. | |
100 | Xiong X, Gao K, Mu J, et al. Study on explosion characteristic parameters and induction mechanism of magnesium powder/hydrogen hybrids[J]. Fuel, 2022, 326: 125077. |
[1] | Jianwen ZHANG, Tingsheng ZHAO, Pingyu WAN, Qianlin WANG, Zhan DOU, Bo XU. Discussion on integrated security control in process industry [J]. CIESC Journal, 2024, 75(6): 2375-2384. |
[2] | Rui CHANG, Ruirui XING, Xuehai YAN. Green and biorecyclable materials based on peptide noncovalent chemistry [J]. CIESC Journal, 2024, 75(4): 1317-1332. |
[3] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
[4] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[5] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[6] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[7] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[8] | Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[11] | Yan WANG, Shuaishuai YANG, Guotao ZHANG, Zihui XU, Wenzhe MAO, Wentao JI. Explosion suppression characteristics and mechanism of ethylene by modified zeolite [J]. CIESC Journal, 2023, 74(12): 5048-5060. |
[12] | Junrui DENG, Zeyu LI, Jiayan CHEN. Pseudo-passive heat removal system for thermal safety of power battery [J]. CIESC Journal, 2023, 74(11): 4679-4687. |
[13] | Xiangyu SHAO, Min JIANG, Xiaojing YANG, Liang PU, Gang LEI, Jianliang GAO. Study on the precooling process of an experimental chamber for low temperature hydrogen explosion [J]. CIESC Journal, 2023, 74(10): 4343-4351. |
[14] | Ruyi TANG, Hanqian PAN, Xiajun ZHENG, Guangxin ZHANG, Xingping WANG, Xili CUI, Huabin XING. Structural characterization of Z-type perfluoropolyether [J]. CIESC Journal, 2023, 74(1): 479-486. |
[15] | Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 225
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||