CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2949-2959.DOI: 10.11949/0438-1157.20240224
• Energy and environmental engineering • Previous Articles Next Articles
Yongqi TONG1(), Jie CHENG1, Hai LIN2, Xi CHEN1, Haibo ZHAO1()
Received:
2024-03-01
Revised:
2024-04-22
Online:
2024-08-21
Published:
2024-08-25
Contact:
Haibo ZHAO
通讯作者:
赵海波
作者简介:
童永祺(1995—),男,博士研究生,511685436@qq.com
基金资助:
CLC Number:
Yongqi TONG, Jie CHENG, Hai LIN, Xi CHEN, Haibo ZHAO. CPFD simulation of a 10 MWth chemical looping combustion reactor[J]. CIESC Journal, 2024, 75(8): 2949-2959.
童永祺, 程杰, 林海, 陈曦, 赵海波. 10 MWth化学链燃烧反应装置的CPFD模拟[J]. 化工学报, 2024, 75(8): 2949-2959.
参数 | 数值 |
---|---|
AR高度/m | 17 |
FR高度/m | 17 |
AR截面积/m2 | 1.8 |
FR截面积/m2 | 0.93 |
总填料量/kg | 25000 |
初始颗粒堆积浓度 | 0.58 |
网格数/个 | 558568 |
时间步长/s | 0.0001 |
计算总时长/s | 60 |
空气反应器温度/K | 1223 |
燃料反应器温度/K | 1183 |
Table 1 Parameters used in the simulation
参数 | 数值 |
---|---|
AR高度/m | 17 |
FR高度/m | 17 |
AR截面积/m2 | 1.8 |
FR截面积/m2 | 0.93 |
总填料量/kg | 25000 |
初始颗粒堆积浓度 | 0.58 |
网格数/个 | 558568 |
时间步长/s | 0.0001 |
计算总时长/s | 60 |
空气反应器温度/K | 1223 |
燃料反应器温度/K | 1183 |
名称 | 类型 | 压力/Pa | 表观气速/(m/s) |
---|---|---|---|
AR_inlet | 速度入口 | — | 8.000 |
AR_outlet | 压力出口 | 101325 | — |
AR_LS_inlet1 | 速度入口 | — | 0.024 |
AR_LS_inlet2 | 速度入口 | — | 0.121 |
AR_LLS_inlet | 速度入口 | — | 0.150 |
FR_inlet | 速度入口 | — | 4.000 |
FR_outlet | 压力出口 | 101325 | — |
FR_LS_inlet1 | 速度入口 | — | 0.024 |
FR_LS_inlet2 | 速度入口 | — | 0.121 |
FR_LLS_inlet | 速度入口 | — | 0.100 |
Thermal_wall | 热流壁面 | — | — |
Table2 Import and export parameters in the simulation
名称 | 类型 | 压力/Pa | 表观气速/(m/s) |
---|---|---|---|
AR_inlet | 速度入口 | — | 8.000 |
AR_outlet | 压力出口 | 101325 | — |
AR_LS_inlet1 | 速度入口 | — | 0.024 |
AR_LS_inlet2 | 速度入口 | — | 0.121 |
AR_LLS_inlet | 速度入口 | — | 0.150 |
FR_inlet | 速度入口 | — | 4.000 |
FR_outlet | 压力出口 | 101325 | — |
FR_LS_inlet1 | 速度入口 | — | 0.024 |
FR_LS_inlet2 | 速度入口 | — | 0.121 |
FR_LLS_inlet | 速度入口 | — | 0.100 |
Thermal_wall | 热流壁面 | — | — |
参数 | 单位 | CH4 | O2 |
---|---|---|---|
ρm | mol/m3 | 32811 | 22472 |
rg | m | 2.6×10-7 | 2.6×10-7 |
b | — | 12 | 4 |
k0 | mol1-n ·m3n-2/s | 8.0×10-4 | 3.1×10-4 |
E | kJ/mol | 49 | 14 |
n | — | 1.3 | 1.0 |
Cg | %(体积分数) | 3 | 11 |
Table 3 Kinetic parameters for the reaction of oxygen carrier particles
参数 | 单位 | CH4 | O2 |
---|---|---|---|
ρm | mol/m3 | 32811 | 22472 |
rg | m | 2.6×10-7 | 2.6×10-7 |
b | — | 12 | 4 |
k0 | mol1-n ·m3n-2/s | 8.0×10-4 | 3.1×10-4 |
E | kJ/mol | 49 | 14 |
n | — | 1.3 | 1.0 |
Cg | %(体积分数) | 3 | 11 |
粒径/μm | 平均粒径/μm | 密度/(kg/m3) | 最小流化速度/(m/s) | 终端速度/(m/s) | 颗粒分类 |
---|---|---|---|---|---|
70~240 | 139 | 2400 | 0.091 | 1.2 | B |
Table 4 Particle parameters for classical experimental conditions
粒径/μm | 平均粒径/μm | 密度/(kg/m3) | 最小流化速度/(m/s) | 终端速度/(m/s) | 颗粒分类 |
---|---|---|---|---|---|
70~240 | 139 | 2400 | 0.091 | 1.2 | B |
Fig.3 Distribution of particles in the reactor for different drag models[(a)—(d) are the instantaneous distributions of particles at the moment of t=60 s for EMMS-Yang, WenYu-Ergun, Turton-Levenspiel, and Nonspherical-Ganser tracer models, respectively; (e)—(h) are the distributions of particles' average solids content in steady state for the four drag models]
1 | Leion H, Mattisson T, Lyngfelt A. Solid fuels in chemical-looping combustion[J]. International Journal of Greenhouse Gas Control, 2008, 2(2): 180-193. |
2 | Fan L S, Zeng L, Wang W, et al. Chemical looping processes for CO2 capture and carbonaceous fuel conversion—prospect and opportunity[J]. Energy & Environmental Science, 2012, 5(6): 7254-7280. |
3 | Abad A, Pérez-Vega R, de Diego L F, et al. Design and operation of a 50 kWth chemical looping combustion (CLC) unit for solid fuels[J]. Applied Energy, 2015, 157: 295-303. |
4 | Abad A, Mendiara T, Gayán P, et al. Comparative evaluation of the performance of coal combustion in 0.5 and 50 kWth chemical looping combustion units with ilmenite, redmud or iron ore as oxygen carrier[J]. Energy Procedia, 2017, 114: 285-301. |
5 | Siriwardane R, Riley J, Bayham S, et al. 50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques[J]. Applied Energy, 2018, 213: 92-99. |
6 | Bayham S, Straub D, Weber J. Operation of the NETL chemical looping reactor with natural gas and a novel copper-iron material[R]. NETL Technical Report Series. Morgantown, WV, 2016. |
7 | Ströhle J, Orth M, Epple B. Design and operation of a 1 MWth chemical looping plant[J]. Applied Energy, 2014, 113: 1490-1495. |
8 | Adanez J, Abad A, Garcia-Labiano F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. |
9 | Shah S, Ritvanen J, Hyppänen T, et al. Wall effects on space averaged two-fluid model equations for simulations of gas-solid flows in risers[J]. Chemical Engineering Science, 2013, 89: 206-215. |
10 | Banerjee S, Agarwal R. Transient reacting flow simulation of spouted fluidized bed for coal-direct chemical looping combustion with different Fe-based oxygen carriers[J]. Applied Energy, 2015, 160: 552-560. |
11 | Zhang Z M, Zhou L J, Agarwal R. Transient simulations of spouted fluidized bed for coal-direct chemical looping combustion[J]. Energy & Fuels, 2014, 28: 1548-1560. |
12 | Zhu X, Shen T X, Bollas G, et al. Design and operation of a multi-stage reactor system for chemical looping combustion process[J]. Fuel Processing Technology, 2021, 215: 106748. |
13 | Reinking Z, Shim H S, Whitty K J, et al. Computational simulation of a 100 kW dual circulating fluidized bed reactor processing coal by chemical looping with oxygen uncoupling[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102795. |
14 | Chen X, Ma J C, Tian X, et al. CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102800. |
15 | Abad A, Adánez J, García-Labiano F, et al. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion[J]. Chemical Engineering Science, 2007, 62(1/2): 533-549. |
16 | Su M Z, Zhao H B, Ma J C. Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed[J]. Energy Conversion and Management, 2015, 105: 1-12. |
17 | Mahalatkar K, Kuhlman J, Huckaby E D, et al. Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels[J]. Chemical Engineering Science, 2011, 66(3): 469-479. |
18 | Snider D M, Clark S M, O'Rourke P J. Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers[J]. Chemical Engineering Science, 2011, 66(6): 1285-1295. |
19 | Wang Q G, Yang H R, Wang P N, et al. Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal(part Ⅰ): Determination of modeling parameters[J]. Powder Technology, 2014, 253: 814-821. |
20 | Everson R, Neomagus H, Kaitano R. The modeling of the combustion of high-ash coal-char particles suitable for pressurised fluidized bed combustion: shrinking reacted core model[J]. Fuel, 2005, 84(9): 1136-1143. |
21 | Castilla G M, Montañés R M, Pallarès D, et al. Dynamic modeling of the reactive side in large-scale fluidized bed boilers[J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 3936-3956. |
22 | Monazam E R, Breault R W, Siriwardane R, et al. Kinetics of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping combustion: a global mechanism[J]. Chemical Engineering Journal, 2013, 232: 478-487. |
23 | Guío-Pérez D C, Pröll T, Hofbauer H. Solids residence time distribution in the secondary reactor of a dual circulating fluidized bed system[J]. Chemical Engineering Science, 2013, 104: 269-284. |
24 | Harichandan A B, Shamim T. CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system[J]. Energy Conversion and Management, 2014, 86: 1010-1022. |
25 | Wang S, Gao J M, Lu H L, et al. Simulation of flow behavior of particles by cluster structure-dependent drag coefficient model for chemical looping combustion process: air reactor modeling[J]. Fuel Processing Technology, 2012, 104: 219-233. |
26 | Kraft S, Kirnbauer F, Hofbauer H. Influence of drag laws on pressure and bed material recirculation rate in a cold flow model of an 8 MW dual fluidized bed system by means of CPFD[J]. Particuology, 2018, 36: 70-81. |
27 | Breault R W, Weber J, Straub D, et al. Computational fluid dynamics modeling of the fuel reactor in NETL's 50 kWth chemical looping facility[J]. Journal of Energy Resources Technology, 2017, 139(4): 042211. |
28 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description[M]. New York: Academic Press, 1994. |
29 | Turton R, Levenspiel O. A short note on the drag correlation for spheres[J]. Powder Technology, 1986, 47(1): 83-86. |
30 | Li J H, Kwauk M. Particle-Fluid Two-Phase Flow: The Engergy-Minimization Multi-Scale Method[M]. Beijing: Metallurgical Industry Press, 1994. |
31 | Chhabra R P, Agarwal L, Sinha N K. Drag on non-spherical particles: an evaluation of available methods[J]. Powder Technology, 1999, 101(3): 288-295. |
32 | Zhu L T, Liu Y X, Luo Z H. An effective three-marker drag model via sub-grid modeling for turbulent fluidization[J]. Chemical Engineering Science, 2018, 192: 759-773. |
33 | Gao X, Wu C, Cheng Y W, et al. Experimental and numerical investigation of solid behavior in a gas-solid turbulent fluidized bed[J]. Powder Technology, 2012, 228: 1-13. |
[1] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[2] | Jinpeng ZHANG, Qiang WANG, Yanmei WANG, Shu YAN, Jianbo WU, Hui ZHANG, Hongcun BAI. Molecular structure evolution characteristics and comparative analysis of Ningxia QH and YCW coal with nickel based oxygen carriers during chemical looping combustion [J]. CIESC Journal, 2023, 74(10): 4252-4266. |
[3] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[4] | Yongshi LIANG, Xianglong ZHAO, Qiang QIN, Cliff Y GUO, Yi CHENG. CPFD simulation on entrained-flow gasifier [J]. CIESC Journal, 2019, 70(9): 3291-3299. |
[5] | Jingchun YAN, Laihong SHEN, Shouxi JIANG, Huijun GE. Chemical looping combustion of high-sodium coal and gasification kinetics of coal char [J]. CIESC Journal, 2019, 70(5): 1913-1922. |
[6] | YIN Shangyi, SONG Tao. Zhundong coal chemical looping combustion performance using CO2 as gasification agent [J]. CIESC Journal, 2018, 69(9): 3954-3964. |
[7] | ZHANG Zhifeng, WANG Yifei, ZHU Longchu, LI Jilin, WANG Fuchen, YU Guangsuo. Distribution of sulfur in chemical looping combustion of anthracite based on Fe-based oxygen carrier [J]. CIESC Journal, 2018, 69(4): 1578-1585. |
[8] | PENG Song, ZENG Dewang, CHEN Chao, QIU Yu, XIAO Rui. Chemical looping combustion performance of CoFeAlO4 oxygen carrier with self-supported function [J]. CIESC Journal, 2018, 69(1): 515-522. |
[9] | DAI Jinxin, LIU Jing, LIU Feng. Influence mechanism of H2S on reactivity of NiFe2O4 oxygen carriers for chemical looping combustion [J]. CIESC Journal, 2017, 68(3): 1163-1169. |
[10] | QIN Wu, HOU Cuicui, ZHANG Junjiao, XIAO Xianbin, CHENG Weiliang, DONG Changqing, YANG Yongping. Chemical looping combustion characteristics of lignite using Co-Fe2O3[104]/Al2O3 oxygen carrier [J]. CIESC Journal, 2016, 67(4): 1459-1466. |
[11] | XIAO Shen, SHEN Laihong, NIU Xin, GU Haiming, GE Huijun. NOx release in chemical looping combustion of N-containing model compounds [J]. CIESC Journal, 2015, 66(11): 4588-4596. |
[12] | ZHENG Min1,SHEN Laihong2. Thermodynamic analysis and suppress research on the Boudouard reaction in the reaction of CaSO4 oxygen carrier with CO [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2846-2851. |
[13] | ZHANG Siwen1,WU Jiahua2,GU Haiming1,SHEN Laihong1,XIAO Jun1. Gas leakage properties of chemical looping combustion in interconnected fluidized bed [J]. CIESC Journal, 2012, 63(7): 2017-2024. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||