CIESC Journal ›› 2016, Vol. 67 ›› Issue (4): 1459-1466.DOI: 10.11949/j.issn.0438-1157.20151309
Previous Articles Next Articles
QIN Wu, HOU Cuicui, ZHANG Junjiao, XIAO Xianbin, CHENG Weiliang, DONG Changqing, YANG Yongping
Received:
2015-08-17
Revised:
2015-10-14
Online:
2016-04-05
Published:
2016-04-05
Supported by:
supported by the National Natural Science Foundation of China (51206044), the Fundamental Research Funds for the Central Universities (2014MS36, 2014ZD14), the Natural Science Foundation of Beijing (3132017) and the 111 Project (B12034).
覃吴, 侯翠翠, 张俊姣, 肖显斌, 程伟良, 董长青, 杨勇平
通讯作者:
覃吴
基金资助:
国家自然科学基金项目(51206044);中央高校基金项目(2014MS36,2014ZD14);北京市自然科学基金项目(3132017);111引智项目(B12034)。
CLC Number:
QIN Wu, HOU Cuicui, ZHANG Junjiao, XIAO Xianbin, CHENG Weiliang, DONG Changqing, YANG Yongping. Chemical looping combustion characteristics of lignite using Co-Fe2O3[104]/Al2O3 oxygen carrier[J]. CIESC Journal, 2016, 67(4): 1459-1466.
覃吴, 侯翠翠, 张俊姣, 肖显斌, 程伟良, 董长青, 杨勇平. Co-Fe2O3[104]铁基载氧体优化体系作用下褐煤化学链燃烧特性[J]. 化工学报, 2016, 67(4): 1459-1466.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151309
[1] | RICHTER H, KNOCHE K. Reversibility of combustion process[J]. Symposium Series, 1983, 235 (1): 71-86. |
[2] | LYNGFELT A, LECKNER B, MATTISSON T. A fluidized-bed combustion process with inherent CO2 separation application of chemical-looping combustion[J]. Chem. Eng. Sci., 2001, 56: 3101-3113. |
[3] | LYNGFELT A, THUNMAN H. Construction and 100 h of operational experience of a 10 kW chemical-looping combustor[M]//THOMAS D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project. Elsevier Science Ltd., 2005: 625-645. |
[4] | ADANEZ J, ABAD A, FRANCISCO G L, et al. Progress in chemical-looping combustion and reforming technologies[J]. Prog. Energ. Combust., 2012, 38 (2): 215-282. |
[5] | CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83: 1215-1225. |
[6] | 陈磊, 金晶, 段慧维, 等. Ni基和Co基金属载氧体的持续循环能力研究[J]. 热能与动力工程, 2011, 26 (6): 665-670. CHEN L, JIN J, DUAN H W, et al. The study of continue circulation of nickel-, cobalt-based oxygen carriers[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26 (6): 665-670. |
[7] | MOHAMMAD M H, DE LASA H I. Chemical-looping combustion (CLC) for inherent CO2 separations—a review[J]. Chem. Eng. Sci., 2008, 63: 4433-4451. |
[8] | ADÁNEZ J, DE DIEGO L F, GARCÍA-LABIANO F. Selection of oxygen carriers for chemical-looping combustion[J]. Energy Fuels, 2004, 18 (2): 371-377. |
[9] | DUESO C, ABAD A, GARCÍA-LABIANO F. Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion[J]. Fuel, 2010, 89 (11): 3399-3409. |
[10] | ZHAO H B, LIU L M, WANG B W, et al. Sol-gel-derived NiO/NiAl2O4 oxygen carriers for chemical-looping combustion by coal char[J]. Energy Fuels, 2008, 22 (2), 898-905. |
[11] | MORI H, WEN C J, OTOMO J, et al. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique[J]. Appl. Catal. A-Gen., 2003, 245 (1): 79-85. |
[12] | MATTISSON T, LEION H, LYNGFELT A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke[J]. Fuel, 2009, 88 (4): 683-690. |
[13] | DENNIS J S, MÜLLER C R, SCOTT S A. In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: performance with bituminous coals[J]. Fuel, 2010, 89 (9): 2353-2354. |
[14] | HOSSAIN M M, SEDOR K E, DE LASA H I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: desorption kinetics and metal-support interaction[J]. Chem. Eng. Sci., 2007, 62: 5464-5472. |
[15] | 张腾, 李振山, 蔡宁生. 利用钙钛矿型氧化物制取O2-CO2混合气体的实验研究[J]. 工程热物理学报, 2008, (9): 1591-1594. ZHANG T, LI Z S, CAI N S. Kinetics of O2 absorption/desorption using a Co-based oxygen carrier[J]. Journal of Engineering Thermophysics, 2008, (9): 1591-1594. |
[16] | 王赵国, 洪慧, 金红光. (CoO+1.0% PtO2)/CoAl2O4化学链燃烧反应性能实验研究[J]. 中国电机工程学报, 2014, 34 (2): 253-259. DOI: 10.13334/j.0258-8013. pcsee.2014.02.006 WANG Z G, HONG H, JIN H G, et al. Experimental investigation on chemical-looping combustion reaction performance of (CoO+1.0%PtO2)/CoAl2O4[J]. Proceedings of the CSEE, 2014, 34 (2): 253-259.DOI: 10.13334/j.0258-8013. pcsee.2014.02.006 |
[17] | ARJMANDA M, LEIONA H, LYNGFELT A, et al. Use of manganese ore in chemical-looping combustion (CLC)—effect on steam gasification[J]. Int. J. Greenhouse Gas Control, 2012, 8: 56-60. |
[18] | ARJMANDA M, LEIONA H, LYNGFELT A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels[J]. Appl. Energy, 2014, 113: 1883-1894. |
[19] | WANG B W, ZHAO H B, ZHENG Y, et al. Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers[J]. Fuel Processing Technology, 2012, 96: 104-115. |
[20] | 胡月, 王伟, 花秀宁, 等. 不同负载铁基载氧体的制备与性能研究[J]. 应用化工, 2014, 43 (6): 979-981. HU Y, WANG W, HUA X N, et al. Preparation and reactivity performance of iron-based oxygen carriers supported on different inert carriers[J]. Applied Chemical Industry, 2014, 43 (6): 979-981. |
[21] | 石司默, 董长青, 覃吴, 等. Fe2O3/粉煤灰载氧体化学链燃烧实验与机理研究[J]. 化工学报, 2012, 63 (12): 4010-4018. DOI: 10.3969/j.issn.0438-1157.2012.12.039. SHI S M, DONG C Q, QIN W, et al. Experimental and theoretical study of Fe2O3/coal ash oxygen carrier in CLC system[J]. CIESC Journal, 2012, 63 (12): 4010-4018. DOI: 10.3969/j.issn.0438-1157.2012.12.039. |
[22] | LEION H, MATTISSON T, LYNGFELT A. Solid fuels in chemical-looping combustion[J]. Int. J. Greenhouse Gas Control, 2008, 2: 180-193. |
[23] | MATTISSON T, JOHANSSON M, LYNGFELT A. Multicycle reduction and oxidation of different types of iron oxide particless application to chemical-looping combustion[J]. Energy Fuels, 2004, 18: 628-637. |
[24] | WANG B W, LÜ H S, ZHAO H B, et al. Experimental and simulated investigation of chemical looping combustion of coal with Fe2O3 based oxygen carrier[J]. Procedia Engineering, 2011, 16: 390-395. |
[25] | 覃吴, 林常枫, 程伟良, 等. 表面形貌控制增强铁基载氧体与褐煤化学链燃烧反应活性[J]. 高等学校化学学报, 2015, 36: 116-123. DOI: 10.7503/cjcu20140756. QIN W, LIN C F, CHENG W L, et al. The reactivity of chemical looping combustion between brown coal and iron-based oxygen carrier inforced by surface morphology control[J]. Chemical Journal of Chinese Universities, 2015, 36: 116-123. DOI: 10.7503/cjcu20140756. |
[26] | QIN W, LIN C F, LONG D T, et al. Reaction activity and deep reduction reaction mechanism of the high index iron oxide surface in chemical looping combustion[J]. Acta Phys. Chim. Sin., 2015, 31 (4): 667-675. |
[27] | QIN W, WANG Y, LIN C F, et al. Possibility of morphological control to improve the activity of oxygen carriers for chemical looping combustion[J]. Energy Fuels, 2015, 29: 1210-1218. |
[28] | 郝丽芳, 李松庚, 崔丽杰. 煤催化热解技术研究进展[J]. 煤炭科学技术, 2010, 19 (40): 108-112. DOI: 10.13199/j.cst.2012.10.114.haolf.004. HAO L F, LI S G, CUI L J. The research progress on catalytic pyrolysis of coal[J]. Coal Science and Technology, 2010, 19 (40): 108-112. DOI: 10.13199/j.cst.2012.10.114.haolf.004. |
[29] | 许邦. 褐煤及液化残渣共热解特性研究[D]. 北京: 中国矿业大学, 2014 XU B. Co-pyrolysis of lignite and direct coal liquefaction residue[D]. Beijing: China University of Mining and Technology, 2014. |
[30] | HAN J Z, WANG X D, YUE J R. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process. Technol., 2014, 122: 98-106. |
[31] | 邹献武, 姚建中, 杨学民. 喷动-载流床中Co/ZSM-5分子筛催化剂对煤热解的催化作用[J]. 工程学报, 2007, 7 (6): 1107-1103. ZOU X W, YAO J Z, YANG X M. The catalysis of Co/ZSM-5 molecular sieve catalyst on coal pyrolysis in a fluidized-bed[J]. Journal of Process Engineering, 2007, 7 (6): 1107-1103. |
[32] | WANG B W, XIAO G, SONG X Y, et al. Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier[J]. J. Therm. Anal. Calorim., 2014, 118 (3): 1593-1602. |
[33] | ?ABOJKO G, KSEPKO E. Effective direct chemical looping coal combustion with bi-metallic Fe-Cu oxygen carriers studied using TG-MS techniques[J]. J. Therm. Anal. Calorim., 2014, 117 (1): 151-162. |
[34] | 覃吴, 李渠, 董长青, 等. Co-Fe2O3纳米载氧体作用下CO化学链燃烧富集CO2[J]. 化工学报, 2014, 65 (8): 3136-3143. DOI: 10.3969/j.issn.0438-1157.2014.08.039. QIN W, LI Q, DONG C Q, et al. CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2[J]. CIESC Journal, 2014, 65 (8): 3136-3143. DOI: 10.3969/j.issn.0438-1157.2014.08.039. |
[35] | LIU Z, LÜ B L, WU D, et al. Preparation and properties of octadecahedral α-Fe2O3 nanoparticles enclosed by {104} and {112} facets[J]. Eur. J. Inorg. Chem., 2012, 25: 4076-4081. |
[36] | 张殿奎.我国褐煤综合利用的发展现状及展望[J]. 神华科技, 2010, 8 (1): 52-56. ZHANG D K. Development situation and outlook for comprehensive utilization of brown coal in China[J]. Northwest Coal, 2010, 8 (1): 52-56. |
[37] | 王保文, 化学链燃烧技术中铁基氧载体的制备及其性能研究[D]. 武汉: 华中科技大学, 2008. WANG B W. The study on the preparation and properties of iron-based oxygen carriers in chemical looping combustion[D]. Wuhan: Huazhong University of Science and Technology, 2008.review[J]. Chem. Eng. Sci., 2008, 63: 4433-4451 |
[8] | Adánez J, de Diego L F, García-Labiano F. Selection of oxygen carriers for chemical-looping combustion[J]. Energy Fuels. 2004, 18(2): 371-377 |
[9] | Dueso C, Abad A, García-Labiano F. Reactivity of a NiO/Al2O3 oxygen carrier prepared by impregnation for chemical-looping combustion[J]. Fuel, 2010, 89(11): 3399-3409 |
[10] | Zhao H B, Liu L M, Wang B W, Xu D, Jiang L L, Zheng C G. Sol-gel-derived NiO/NiAl2O4 oxygen carriers for chemical-looping combustion by coal char[J]. Energy Fuels, 2008, 22(2), 898-905 |
[11] | Mori H, Wen C J, Otomo J, Eguchi K, Takahashi H. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique [J]. Appl. Catal. A-Gen., 2003, 245(1): 79-85 |
[12] | Mattisson T, Leion H, Lyngfelt A. Chemical-looping with oxygen uncoupling using CuO/ZrO2 with petroleum coke[J]. Fuel, 2009, 88(4): 683-690 |
[13] | Dennis J S, Müller C R, Scott S A. In situ gasification and CO2 separation using chemical looping with a Cu-based oxygen carrier: Performance with bituminous coals[J]. Fuel, 2010, 89(9): 2353-2354 |
[14] | Hossain M M, Sedor K E, de Lasa H I. Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical-looping combustion: Desorption kinetics and metal-support interaction[J]. Chem. Eng. Sci., 2007, 62: 5464 -5472 |
[15] | Zhang Teng(张腾), Li Zhenshan(李振山), Cai Ningsheng(蔡宁生). Kinetics of O2 absorption/desorption using a Co-based oxygen carrier[J]. Chinese Society of Engineering Thermophysics (China) (中国工程热物理学会) |
[16] | Wang Zhangguo(王赵国), Hong Hui(洪慧), Jing Hongguang(金红光), Han Tao(韩涛), He Fengjuan(贺凤娟). Experimental Investigation on chemical-looping combustion reaction performance of (CoO+1.0%PtO2)/ CoAl2O4[J]. Proceedings of the CSEE (China) (中国电机工程学报), 2014, 34(2): 253-259 |
[17] | Arjmanda M, Leiona H, Lyngfelt A, Mattisson T. Use of manganese ore in chemical-looping combustion (CLC)—effect on steam gasification[J]. Int. J. Greenhouse Gas Control, 2012, 8: 56-60 |
[18] | Arjmanda M, Leiona H, Lyngfelt A. Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels[J]. Appl. Energy, 2014, 113: 1883-1894 |
[19] | Wang B W, Zhao H B, Zheng Y, Liu Z H, Yan R, Zheng C G. Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers[J]. Fuel Processing Technology, 2012, 96: 104-115 |
[20] | Hu Yue(胡月), Wang Wei(王伟), Hua Xiuning(花秀宁), Han Ping(韩萍). Preparation and reactivity performance of iron-based oxygen carriers supported on different inert carriers[J]. Chinese Journal of Applied Chemistry (China) (应用化学), 2014, 43(6) |
[21] | Shi Simo(石司默), Dong Changqing(董长青), Qin Wu(覃吴), Wang Lei(王磊), LiWenyan(李文艳), Yang Yongping(杨勇平). Experimental and theoretical study of Fe2O3/coal ash osygen carrier in CLC system[J]. CIESC Journal (China) (化工学报), 2012, 63(12): 4010-4018 |
[22] | Leion H, Mattisson T, Lyngfelt A. Solid fuels in chemical-looping combustion[J]. Int. J. Greenhouse Gas Control, 2008, 2: 180-193 |
[23] | Mattisson T, Johansson M, Lyngfelt A. Multicycle reduction and oxidation of different types of iron oxide particless application to chemical-looping combustion[J]. Energy Fuels, 2004, 18: 628-637 |
[24] | Wang B W, Lv H S, Zhao H B, Zheng C G. Experimental and simulated investigation of chemical looping combustion of coal with Fe2O3 based oxygen carrier[J]. Procedia Engineering, 2011, 16: 390-395 |
[25] | Qin Wu(覃吴), Lin Changfeng(林常枫), Cheng Weilaing(程伟良), Xiao Xianbin(肖显斌), The reactivity of chemical looping combustion between brown coal and iron-based oxygen carrier inforced by surface morphology control[J]. Chemical Journal Of Chinese Universities (China) (高等学校化工学报), 2015, 36: 116-123 |
[26] | Qin W, Lin C F, Long D T, Xiao X B, Dong C Q. Reaction activity and deep reduction reaction mechanism of the high index iron oxide surface in chemical looping combustion[J]. Acta Phys Chim Sin., 2015, 31(4): 667-675 |
[27] | Qin W, Wang Y, Lin C F, Hu X Q, Dong C Q. Possibility of morphological control to improve the activity of oxygen carriers for chemical looping combustion[J]. Energy Fuels, 2015, 29: 1210-1218. |
[28] | Hao Lifang(郝丽芳), Li Songgen(李松庚), Cui Lijie(崔丽杰). The research progress on catalytic pyrolysis of coal[J]. Coal science and Technology (China) (煤炭科学技术), 2010, 19(40): 108-112 |
[29] | Clean coal technologies in Japan[R]. Japan Coal Energy Center, 2007: 67-68 |
[30] | Xu Ban(许邦). Co-pyrolysisof lignite and direct coal liquefaction residue[D]. China University of Mining and Technology (中国矿业大学), 2014 |
[31] | Zou Xianw(邹献武), Yao Jianzhong(姚建中), Yang Xuemin(杨学民). The catalysis of Co/ZSM-5 molecular sievecatalyst on coal pyrolysis in a fluidized-bed[J]. Journal of process engineering (China) (工程学报), 2007, 7(6): 1107-1103 |
[32] | Han J Z, Wang X D, Yue J R. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process. Technol., 2014, 122: 98-106 |
[33] | Wang B W, Xiao G, Song X Y, Zhao H B, Zheng C G. Chemical looping combustion of high-sulfur coal with NiFe2O4 -combined oxygen carrier[J]. J. Therm. Anal. Calorim., 2014, 118(3), 1593-1602 |
[34] | ?abojko G, Ksepko E. Effective direct chemical looping coal combustion with bi-metallic Fe-Cu oxygen carriers studied using TG-MS techniques[J]. J. Therm. Anal. Calorim., 2014, 117(1), 151-162 |
[35] | Qin Wu(覃吴), Li Qu(李渠), Dong Changqing(董长青), Cheng Weiliang(程伟良), Yang Yongping(杨勇平), CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2[J]. CIESC Journal (China) (化工学报), 2014, 65(8): 3136-3143 |
[36] | Liu Z, Lv B L, Wu D, Sun Y H, Xu Y. Preparation and properties of octadecahedral α-Fe2O3 nanoparticles enclosed by {104} and {112} facets[J]. Eur. J. Inorg. Chem., 2012, 4076-4081 |
[37] | Zhang Diankui(张建奎). The development status and prospect of comprehensive utilization of lignite in China[J]. Northwest Coal(China), 2010, 8(1): 52-56 |
[38] | Wang Baowen(王保文). the study on the preparation and properties of iron-based oxygen carriers in Chemical looping combustion[D]. The Huazhong University of Science and Technology, 2008 |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[5] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[6] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[7] | Di WU, Bin HU, Ruzhu WANG, Junyu LIANG. Performance analysis of water vapor quasi-saturated compression high temperature heat pump system [J]. CIESC Journal, 2023, 74(S1): 45-52. |
[8] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[9] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[10] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[11] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[12] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[13] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[14] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[15] | Yifan JIANG, Lei LIU, Yao ZHAO, Yanjun DAI. Research on the performance of liquid cooling system for UVLED optical components [J]. CIESC Journal, 2023, 74(S1): 154-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||