[1] |
HOSSAIN M M, DE LASA H I. Chemical-looping combustion (CLC) for inherent separations-a review[J]. Chemical Engineering Science, 2008, 63(18):4433-4451.
|
[2] |
ISHIDA M, JIN H. A new advanced power-generation system using chemical-looping combustion[J]. Energy, 1994, 19(4):415-422.
|
[3] |
ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-Looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2):215-282.
|
[4] |
LYNGFELT A, LECKNER B, MATTISSON T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion[J]. Chemical Engineering Science, 2001, 56(10):3101-3113.
|
[5] |
ISHIDA M, ZHENG D, AKEHATA T. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis[J]. Energy, 1987, 12(2):147-154.
|
[6] |
高正平, 沈来宏, 肖军. 基于NiO载氧体的煤化学链燃烧实验[J]. 化工学报, 2008, 59(5):1242-1250. GAO Z P, SHEN L H, XIAO J. Chemical looping combustion of coal based on NiO oxygen carrier[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(5):1242-1250.
|
[7] |
CHO P, MATTISSON T, LYNGFELT A. Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion[J]. Fuel, 2004, 83(9):1215-1225.
|
[8] |
LEE J-B, PARK C-S, CHOI S-I, et al. Redox characteristics of various kinds of oxygen carriers for hydrogen fueled chemical-looping combustion[J]. J. Ind. Eng. Chem.(Seoul, Repub Korea), 2005, 11(1):96-102.
|
[9] |
杨伟进, 王坤, 赵海波, 等. 过渡金属修饰Fe2O3/Al2O3氧载体的Redox性能研究[J]. 燃料化学学报, 2015, 43(5):635-640. YANG W J, WANG K, ZHAO H B, et al. Investigation on redox performance of transiton metal decorated Fe2O3/Al2O3 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5):635-640.
|
[10] |
PANS M A, GAY N P, ABAD A, et al. Use of chemically and physically mixed iron and nickel oxides as oxygen carriers for gas combustion in a CLC process[J]. Fuel Processing Technology, 2013, 115:152-163.
|
[11] |
EVDOU A, ZASPALIS V, NALBANDIAN L. Ferrites as redox catalysts for chemical looping processes[J]. Fuel, 2016, 165:367-378.
|
[12] |
YANG W, ZHAO H, WANG K, et al. Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion[J]. Proceedings of the Combustion Institute, 2015, 35(3):2811-2818.
|
[13] |
ASTON V J, EVANKO B W, WEIMER A W. Investigation of novel mixed metal ferrites for pure H2 and CO2 production using chemical looping[J]. International Journal of Hydrogen Energy, 2013, 38(22):9085-9096.
|
[14] |
KUO Y L, HSU W M, CHIU P C, et al. Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process[J]. Ceramics International, 2013, 39(5):5459-5465.
|
[15] |
JOHANSSON M, MATTISSON T, LYNGFELT A. Creating a synergy effect by using mixed oxides of iron-and nickel oxides in the combustion of methane in a chemical-looping combustion reactor[J]. Energy & Fuels, 2006, 20(6):2399-2407.
|
[16] |
WANG B, XIAO G, SONG X, et al. Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(3):1593-1602.
|
[17] |
KSEPKO E, SIRIWARDANE R V, TIAN H, et al. Comparative investigation on chemical looping combustion of coal-derived synthesis gas containing H2S over supported NiO oxygen carriers[J]. Energy & Fuels, 2010, 24(8):4206-4214.
|
[18] |
高正平, 沈来宏, 肖军, 等. 化学链燃烧中镍基载氧体与H2S反应机理研究[J]. 工程热物理学报, 2010, 31(4):713-716. GAO Z P, SHEN L H, XIAO J, et al. Mechanism of hydrogen sulfide reaction with Ni-based oxygen carrier in chemical looping combustion[J]. Journal of Engineering Thermophysics, 2010, 31(4):713-716.
|
[19] |
TIAN H, SIMONYI T, POSTON J, et al. Effect of hydrogen sulfide on chemical looping combustion of coal-derived synthesis gas over bentonite-supported metal-oxide oxygen carriers[J]. Industrial & Engineering Chemistry Research, 2009, 48(18):8418-8430.
|
[20] |
LIN C, QIN W, DONG C. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface:a DFT study[J]. Applied Surface Science, 2016, 387:720-731.
|
[21] |
PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Physical Review B, 1996, 54(23):16533-16539.
|
[22] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865.
|
[23] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11):7892-7895.
|
[24] |
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188.
|
[25] |
SEGALL M, LINDAN P J, PROBERT M A, et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14(11):2717-2744.
|
[26] |
PERRON H, MELLIER T, DOMAIN C, et al. Structural investigation and electronic properties of the nickel ferrite NiFe2O4:a periodic density functional theory approach[J]. Journal of Physics:Condensed Matter, 2007, 19(34):346219.
|
[27] |
SHI X, LI Y F, BERNASEK S L, et al. Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor[J]. Surface Science, 2015, 640:73-79.
|
[28] |
RAI R C, WILSER S, GUMINIAK M, et al. Optical and electronic properties of NiFe2O4 and CoFe2O4 thin films[J]. Applied Physics A, 2011, 106(1):207-211.
|
[29] |
WEST A R. Basic Solid State Chemistry[M]. 2nd ed. New York:John Wiley & Sons, 1999:388.
|
[30] |
LIDE D R. Handbook of Chemistry and Physics[M]. Boca Raton:CRC Press, 2001-2002:9-21.
|
[31] |
PARK S, AHN H S, LEE C K, et al. Interaction and ordering of vacancy defects in NiO[J]. Physical Review B, 2008, 77(13):134103.
|
[32] |
HUANG L, TANG M, FAN M, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159:132-144.
|