CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2960-2969.DOI: 10.11949/0438-1157.20240231
• Energy and environmental engineering • Previous Articles Next Articles
Shuaiqi ZHAO(), Rui ZHANG, Han HUANG, Kunpeng ZHAO, Bofeng BAI()
Received:
2024-03-01
Revised:
2024-06-29
Online:
2024-08-21
Published:
2024-08-25
Contact:
Bofeng BAI
通讯作者:
白博峰
作者简介:
赵帅琪(1997—),男,博士研究生,shuaiqizhao@stu.xjtu.edu.cn
基金资助:
CLC Number:
Shuaiqi ZHAO, Rui ZHANG, Han HUANG, Kunpeng ZHAO, Bofeng BAI. Inhibition of water-gas shift reaction on coal gasification in supercritical water[J]. CIESC Journal, 2024, 75(8): 2960-2969.
赵帅琪, 张瑞, 黄瀚, 赵昆鹏, 白博峰. 水气转化对超临界水煤气化的抑制特性[J]. 化工学报, 2024, 75(8): 2960-2969.
算例 | 颗粒当量 直径/mm | 水气转化反应 | 算例 | 颗粒当量 直径/mm | 水气转化反应 |
---|---|---|---|---|---|
Case1 | 0.2 | 考虑 | Case10 | 0.2 | 忽略 |
Case2 | 0.4 | 考虑 | Case11 | 0.4 | 忽略 |
Case3 | 0.6 | 考虑 | Case12 | 0.6 | 忽略 |
Case4 | 0.8 | 考虑 | Case13 | 0.8 | 忽略 |
Case5 | 1.0 | 考虑 | Case14 | 1.0 | 忽略 |
Case6 | 1.4 | 考虑 | Case15 | 1.4 | 忽略 |
Case7 | 1.8 | 考虑 | Case16 | 1.8 | 忽略 |
Case8 | 2.0 | 考虑 | Case17 | 2.0 | 忽略 |
Case9 | 2.4 | 考虑 | Case18 | 2.4 | 忽略 |
Table 1 Simulation case set-up
算例 | 颗粒当量 直径/mm | 水气转化反应 | 算例 | 颗粒当量 直径/mm | 水气转化反应 |
---|---|---|---|---|---|
Case1 | 0.2 | 考虑 | Case10 | 0.2 | 忽略 |
Case2 | 0.4 | 考虑 | Case11 | 0.4 | 忽略 |
Case3 | 0.6 | 考虑 | Case12 | 0.6 | 忽略 |
Case4 | 0.8 | 考虑 | Case13 | 0.8 | 忽略 |
Case5 | 1.0 | 考虑 | Case14 | 1.0 | 忽略 |
Case6 | 1.4 | 考虑 | Case15 | 1.4 | 忽略 |
Case7 | 1.8 | 考虑 | Case16 | 1.8 | 忽略 |
Case8 | 2.0 | 考虑 | Case17 | 2.0 | 忽略 |
Case9 | 2.4 | 考虑 | Case18 | 2.4 | 忽略 |
Fig.1 Evolution of heterogeneous reaction front morphology, fluid species distributions, temperature distribution and porosity distribution inside the coal particle during the SCWG
Fig.3 Variation of heat transport rate, species diffusion rate, heterogeneous reaction rate and effectiveness factor with particle conversion of particles with different sizes
Fig.4 Gasification time (when particle conversion X = 85%) of particles with different sizes in the SCWG with or without intrapore WGSR (tc1—with, tc2—without), effective gasification factor of particles with different sizes
Fig.5 Ratio of gasification time (when particle conversion X = 85%) of the SCWG with and without intrapore WGSR versus effective gasification factor of particles (tc1—with, tc2—without)
1 | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902, 3980. |
Chen Z W, Wei J J, Zhang Y M. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC[J]. CIESC Journal, 2023, 74(9): 3888-3902, 3980. | |
2 | Jin H, Zhang B W, Fan C, et al. A perspective on multi-component resistance analogy analysis for process intensification: taking supercritical water gasification of coal as an example[J]. Chemical Engineering and Processing - Process Intensification, 2022, 174: 108859. |
3 | Guo L J, Ou Z S, Liu Y, et al. Technological innovations on direct carbon mitigation by ordered energy conversion and full resource utilization[J]. Carbon Neutrality, 2022, 1(1): 4. |
4 | Zhang R, Zhao S Q, Sun C Z, et al. Particle morphology evolution and its enhancement for lignite gasification in supercritical water[J]. Industrial & Engineering Chemistry Research, 2023, 62(40): 16268-16279. |
5 | Jin H, Fan C, Wei W W, et al. Evolution of pore structure and produced gases of Zhundong coal particle during gasification in supercritical water[J]. The Journal of Supercritical Fluids, 2018, 136: 102-109. |
6 | Fan C, Jin H, Shang F, et al. Study on the surface structure development of porous char particles in catalytic supercritical water gasification process[J]. Fuel Processing Technology, 2019, 193: 73-81. |
7 | Ge Z W, Guo L J, Jin H. Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: the study on reaction kinetics[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9660-9666. |
8 | 葛庆仁. 气固反应动力学[M]. 北京: 原子能出版社, 1991. |
Ge Q R. Gas-Solid Reaction Kinetics[M]. Beijing: Atomic Press, 1991. | |
9 | 孙康. 宏观反应动力学及其解析方法[M]. 北京: 冶金工业出版社, 1998. |
Sun K. Macroscopic Reaction Kinetics and its Analytical Method[M]. Beijing: Metallurgical Industry Press, 1998. | |
10 | Yagi T, Ono Y. A method of analysis for reduction of iron oxide in mixed-control kinetics[J]. Transactions of the Iron and Steel Institute of Japan, 1968, 8(6): 377-381. |
11 | Jin H, Zhao X, Guo S M, et al. Investigation on linear description of the char conversion for the process of supercritical water gasification of Yimin lignite[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16070-16076. |
12 | Zhang X S, Zhu Z M, Wen G C, et al. Study on gas desorption and diffusion kinetic behavior in coal matrix using a modified shrinking core model[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108701. |
13 | Bhatia S K, Perlmutter D D. A random pore model for fluid-solid reactions(Ⅰ): Isothermal, kinetic control[J]. AIChE Journal, 1980, 26(3): 379-386. |
14 | Iwaszenko S, Howaniec N, Smoliński A. Determination of random pore model parameters for underground coal gasification simulation[J]. Energy, 2019, 166: 972-978. |
15 | Szekely J, Evans J W. A structural model for gas-solid reactions with a moving boundary[J]. Chemical Engineering Science, 1970, 25(6): 1091-1107. |
16 | Siddiqui H, Gupta A, Mahajani S M. Non-equimolar transient grain model for CO2-gasification of single biomass char pellet[J]. Fuel, 2021, 293: 120389. |
17 | Prasannan P C, Doraiswamy L K. Gas-solid reactions: experimental evaluation of the zone model[J]. Chemical Engineering Science, 1982, 37(6): 925-937. |
18 | Szekely J, Evans J W. A structural model for gas-solid reactions with a moving boundary(Ⅱ): The effect of grain size, porosity and temperature on the reaction of porous pellets[J]. Chemical Engineering Science, 1971, 26(11): 1901-1913. |
19 | Wang J J, Hu S W, Liu X H. Kinetic modelling and experimental validation of single large particle combustion of coal char[J]. Chemical Engineering Journal, 2022, 450: 138227. |
20 | Ishida M, Wen C Y. Comparison of zone-reaction model and unreacted-core shrinking model in solid-gas reactions(Ⅰ): Isothermal analysis[J]. Chemical Engineering Science, 1971, 26(7): 1031-1041. |
21 | Gil M V, Riaza J, Álvarez L, et al. Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres[J]. Energy, 2012, 48(1): 510-518. |
22 | Chen L, Kang Q J, Carey B, et al. Pore-scale study of diffusion-reaction processes involving dissolution and precipitation using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2014, 75: 483-496. |
23 | Kang Q J, Lichtner P C, Viswanathan H S, et al. Pore scale modeling of reactive transport involved in geologic CO2 sequestration[J]. Transport in Porous Media, 2010, 82(1): 197-213. |
24 | Chen L, Kang Q J, Tang Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 935-949. |
25 | Alhashmi Z, Blunt M J, Bijeljic B. The impact of pore structure heterogeneity, transport, and reaction conditions on fluid-fluid reaction rate studied on images of pore space[J]. Transport in Porous Media, 2016, 115(2): 215-237. |
26 | Liu M, Mostaghimi P. Numerical simulation of fluid-fluid-solid reactions in porous media[J]. International Journal of Heat and Mass Transfer, 2018, 120: 194-201. |
27 | Feng H F, Sun J L, Jin H, et al. Char suppression mechanism using recycled intermediate phenol in supercritical water gasification of coal[J]. Fuel, 2021, 305: 121441. |
28 | Ge Z W, Guo L J, Jin H. Catalytic supercritical water gasification mechanism of coal[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9504-9511. |
29 | Sun J L, Feng H F, Xu J L, et al. Investigation of the conversion mechanism for hydrogen production by coal gasification in supercritical water[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10205-10215. |
30 | Ou Z S, Guo L J, Chi C, et al. Fully resolved direct numerical simulation of single coal particle gasification in supercritical water[J]. Fuel, 2022, 329: 125474. |
31 | Zhao S Q, Zhang R, Huang H, et al. Intrapore water-gas shift reaction inhibits coal gasification in supercritical water[J]. Chemical Engineering Science, 2024, 289: 119843. |
32 | Wang H, Li Z S, Fan X X, et al. Rate-equation-based grain model for the carbonation of CaO with CO2 [J]. Energy & Fuels, 2017, 31(12): 14018-14032. |
33 | Wesenauer F, Jordan C, Pichler M, et al. An unreacted shrinking core model serves for predicting combustion rates of organic additives in clay bricks[J]. Energy & Fuels, 2020, 34(12): 16679-16692. |
34 | Kay W. Gases and vapors at high temperature and pressure-density of hydrocarbon[J]. Industrial & Engineering Chemistry, 1936, 28(9): 1014-1019. |
[1] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[2] | Peiqi LI, Xuejiao CHEN, Boxiang WU, Rongpei JIANG, Chao YANG, Zhaohui LIU. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters [J]. CIESC Journal, 2024, 75(7): 2422-2432. |
[3] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[4] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of reactors for liquid-liquid heterogeneous system [J]. CIESC Journal, 2024, 75(3): 727-742. |
[5] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
[6] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[7] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
[8] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[9] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[10] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[11] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[12] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[13] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[14] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[15] | Chao KANG, Jinpeng QIAO, Shengchao YANG, Chao PENG, Yuanpeng FU, Bin LIU, Jianrong LIU, Aleksandrova TATIANA, Chenlong DUAN. Research progress on activation extraction of valuable metals in coal gangue [J]. CIESC Journal, 2023, 74(7): 2783-2799. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||