CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 3923-3934.DOI: 10.11949/0438-1157.20240533
• Reviews and monographs • Previous Articles Next Articles
Xiaojie JU(), Mingwei HE, Youqiang XIA, Wei WANG, Liangyin CHU
Received:
2024-05-20
Revised:
2024-07-15
Online:
2024-12-26
Published:
2024-11-25
Contact:
Xiaojie JU
通讯作者:
巨晓洁
作者简介:
巨晓洁(1980—),女,博士,教授,juxiaojie@scu.edu.cn
基金资助:
CLC Number:
Xiaojie JU, Mingwei HE, Youqiang XIA, Wei WANG, Liangyin CHU. Research progress on controllable fabrication of anisotropic microfibers by microfluidics[J]. CIESC Journal, 2024, 75(11): 3923-3934.
巨晓洁, 何明炜, 夏有强, 汪伟, 褚良银. 微流控技术可控制备异形微纤维的研究进展[J]. 化工学报, 2024, 75(11): 3923-3934.
Fig.1 Microfluidic fabrication of solid microfibers: (a) Illustration of a coaxial capillary microfluidic device for the fabrication of CaAlg microfibers[31]; (b) PCL microfibers[32]; (c) Illustration of a coaxial capillary microfluidic device with a double conical tube as an internal phase microchannel[35]; CaAlg microfibers with Janus-compartments (d) and six-compartments (e)[35]; (f) Janus bicompartmental microfibers[36]; Illustration of a “sandwich-like” microchip (g) and CaAlg microfibers with two-compartments (h)[37]; Illustration of a three-dimensional microfluidic chip (i) and CaAlg microfibers with four-compartments (j)[38]; (k) Microfibers with noncircular cross-section[39]; (l) Polymerized acrylate flat microfibers[40]; (m) Flat CaAlg microfibers with grooves[8]
Fig.2 Microfluidic fabrication of single-channel hollow microfibers: (a),(b) The microfluidic device to fabricate hollow PES microfibers[43]; (c) PAN hollow microfibers[41]; (d) PES hollow microfibers[22]; (e) The jet flow in the oil-phase isolation layer[45]; (f) PLGA hollow microfibers embedded with K+-responsive nanoparticles[13]
Fig.3 Microfluidic fabrication of multilayer, multichannel, multicomponent hollow microfibers: (a)—(c) CaAlg hollow microfibers with multichannels[35]; (d)—(f) CaAlg hollow microfibers with multicompartmental shell layers[35]; θ-type capillary microchannel device (g) and the prepared Janus-hollow microfibers (h)[46]; The Janus-hollow microfibers with four-channels (i) and three-compartment-hollow microfibers with three-channels (j)[46]; CaAlg microfibers with one [(k), (n)], three [(l), (o)] and five [(m), (p)] hollows[47]; (q) Multi-component CaAlg microfibers with multi-hollow structure[48]
Fig.4 Microfluidic fabrication of spindle-shaped microfibers: (a), (b) Microfluidic fabrication of spindle-shaped microfibers[49]; Spindle-shaped microfibers with embedded Janus channels (c) and helical channels (d)[51]; (e), (f) The “Buddha beads” spindle-shaped microfibers[52]; (g) CaAlg spindle microfibers[54]
Fig.5 Microfluidic fabrication of “spindle-like” shaped microfibers: (a),(b) The “peapod-like” microfibers[29]; (c) The “bamboo-like” microfibers[60]; (d)—(f) The “hemline-shaped” microfibers[3]
Fig.6 Microfluidics fabrication of helical microfibers: (a) Illustration of microfluidic device for controllable fabrication of helical microfibers[64]; (b) CaAlg helical microfibers[65]; (c) Illustration of microfluidic device for controllable fabrication of helical microfibers[67]; (d) Flexible polymer film embedded in the helical microfibers[63]; (e),(f) PUU3-12 helical microfibers and their super helical microfibers[69]; (g) Illustration of the mini-rTDP system[71]; CaAlg microfibers with three-component (h), Janus structure (i), multilayered structure (j) and double-helical type (k)[16]; (l) Helical micromotors[72]
43 | Lan W J, Li S W, Xu J H, et al. Controllable synthesis of microscale titania fibers and tubes using co-laminar micro-flows[J]. Chemical Engineering Journal, 2012, 181: 828-833. |
44 | Meng Z J, Wang W, Xie R, et al. Microfluidic generation of hollow Ca-alginate microfibers[J]. Lab on a Chip, 2016, 16(14): 2673-2681. |
45 | 谭昕玥, 巨晓洁, 谢锐, 等. 具有油相隔离层的微流控法可控制备中空微纤维[J]. 高分子材料科学与工程, 2022, 38(3): 1-9, 17. |
Tan X Y, Ju X J, Xie R, et al. Controllable preparation of hollow microfibers by microfluidic with oil phase as isolatoin layer[J]. Polymer Materials Science & Engineering, 2022, 38(3): 1-9, 17. | |
46 | Cheng Y, Yu Y R, Fu F F, et al. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 1080-1086. |
47 | Yu Y, Wei W B, Wang Y Q, et al. Simple spinning of heterogeneous hollow microfibers on chip[J]. Advanced Materials, 2016, 28(31): 6649-6655. |
48 | Li W, Yao K, Tian L L, et al. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning[J]. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16(10): 913-922. |
49 | Shang L R, Fu F F, Cheng Y, et al. Bioinspired multifunctional spindle-knotted microfibers from microfluidics[J]. Small, 2017, 13(4): 1600286. |
50 | Shang L R, Wang Y T, Yu Y R, et al. Bio-inspired stimuli-responsive graphene oxide fibers from microfluidics[J]. Journal of Materials Chemistry A, 2017, 5(29): 15026-15030. |
51 | Xie R X, Xu P D, Liu Y P, et al. Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process[J]. Advanced Materials, 2018, 30(14): 1705082. |
52 | Wang J, Zou M H, Sun L Y, et al. Microfluidic generation of Buddha beads-like microcarriers for cell culture[J]. Science China Materials, 2017, 60(9): 857-865. |
53 | Ji X B, Guo S, Zeng C F, et al. Continuous generation of alginate microfibers with spindle-knots by using a simple microfluidic device[J]. RSC Advances, 2015, 5(4): 2517-2522. |
54 | Liu Y F, Yang N, Li X, et al. Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics[J]. Small, 2020, 16(9): 1901819. |
55 | Kang E, Jeong G S, Choi Y Y, et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11): 877-883. |
56 | Peng Q F, Shao H L, Hu X C, et al. The development of fibers that mimic the core-sheath and spindle-knot morphology of artificial silk using microfluidic devices[J]. Macromolecular Materials and Engineering, 2017, 302(10): 1700102. |
57 | Tian Y, Zhu P G, Tang X, et al. Large-scale water collection of bioinspired cavity-microfibers[J]. Nature Communications, 2017, 8(1): 1080. |
58 | Tian Y, Wang J C, Wang L Q. Microfluidic fabrication of bioinspired cavity-microfibers for 3D scaffolds[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29219-29226. |
59 | 张秀, 谢锐, 汪伟, 等. 豆荚结构聚乙烯醇缩丁醛/氧化铝复合相变纤维的制备及性能[J]. 化工进展, 2019, 38(2): 993-999. |
Zhang X, Xie R, Wang W, et al. Preparation and properties of polyvinyl butyral/Al2O3 composite phase change microfibers with peapod-like structure[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 993-999. | |
60 | Yu Y, Wen H, Ma J Y, et al. Flexible fabrication of biomimetic bamboo-like hybrid microfibers[J]. Advanced Materials, 2014, 26(16) :2494-2499. |
61 | Jia L L, Han F X, Yang H L, et al. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications[J]. Advanced Healthcare Materials, 2019, 8(13): 1900435. |
62 | Tang M J, Wang W, Li Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9430-9438. |
63 | Yu Y R, Guo J H, Sun L Y, et al. Microfluidic generation of microsprings with ionic liquid encapsulation for flexible electronics[J]. Research, 2019, 2019: 6906275. |
64 | Tottori S, Takeuchi S. Formation of liquid rope coils in a coaxial microfluidic device[J]. RSC Advances, 2015, 5(42): 33691-33695. |
65 | Ma W J, Liu D, Ling S D, et al. High-throughput and controllable fabrication of helical microfibers by hydrodynamically focusing flow[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 59392-59399. |
66 | Wang W, He X H, Zhang M J, et al. Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700429. |
67 | Cai Q W, Ju X J, Zhang S Y, et al. Controllable fabrication of functional microhelices with droplet microfluidics[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 46241-46250. |
68 | 朱爱娣. 单乳液微流控制备核-壳/Janus微球及螺旋型微纤维[D]. 苏州: 苏州大学, 2016. |
Zhu A D. Preparation of core-shell /Janus microspheres and spiral microfibers by single emulsion microfluidic control[D]. Suzhou: Soochow University, 2016. | |
69 | Yang H L, Guo M Y. Bioinspired polymeric helical and superhelical microfibers via microfluidic spinning[J]. Macromolecular Rapid Communications, 2019, 40(12): 1900111. |
70 | 杨慧丽. 微流控制备聚合物螺旋、超螺旋微纤维及螺旋管研究[D]. 苏州: 苏州大学, 2019. |
Yang H L. Study on preparation of polymer spiral, super-spiral microfiber and spiral tube by microfluidic control[D]. Suzhou: Soochow University, 2019. | |
71 | Kato S, Carlson D W, Shen A Q, et al. Twisted fiber microfluidics: a cutting-edge approach to 3D spiral devices[J]. Microsystems & Nanoengineering, 2024, 10: 14. |
72 | Yu Y R, Shang L R, Gao W, et al. Microfluidic lithography of bioinspired helical micromotors[J]. Angewandte Chemie International Edition, 2017, 56(40): 12127-12131. |
1 | Bai H, Sun R Z, Ju J, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7(24): 3429-3433. |
2 | Feng S L, Hou Y P, Xue Y, et al. Photo-controlled water gathering on bio-inspired fibers[J]. Soft Matter, 2013, 9(39): 9294-9297. |
3 | Yang C Y, Yu Y R, Shang L R, et al. Flexible hemline-shaped microfibers for liquid transport[J]. Nature Chemical Engineering, 2024, 1: 87-96. |
4 | Hwang C M, Khademhosseini A, Park Y, et al. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering[J]. Langmuir, 2008, 24(13): 6845-6851. |
5 | Li Z R, Zhang X C, Ouyang J, et al. Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis[J]. Bioactive Materials, 2021, 6(11): 4053-4064. |
6 | Filippi M, Buchner T, Yasa O, et al. Microfluidic tissue engineering and bio-actuation[J]. Advanced Materials, 2022, 34(23): 2108427. |
7 | Moutos F T, Freed L E, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage[J]. Nature Materials, 2007, 6(2): 162-167. |
8 | Kang E, Choi Y Y, Chae S K, et al. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds[J]. Advanced Materials, 2012, 24(31): 4271-4277. |
9 | Jiao J, Wang F, Huang J J, et al. Microfluidic hollow fiber with improved stiffness repairs peripheral nerve injury through non-invasive electromagnetic induction and controlled release of NGF[J]. Chemical Engineering Journal, 2021, 426: 131826. |
10 | Aykar S S, Alimoradi N, Taghavimehr M, et al. Microfluidic seeding of cells on the inner surface of alginate hollow microfibers[J]. Advanced Healthcare Materials, 2022, 11(11): 2102701. |
11 | Illath K, Kar S, Gupta P, et al. Microfluidic nanomaterials: from synthesis to biomedical applications[J]. Biomaterials, 2022, 280: 121247. |
12 | Lin Y S, Huang K S, Yang C H, et al. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture[J]. PLoS One, 2012, 7(3): e33184. |
13 | Jiang M Y, Ju X J, Deng K, et al. The microfluidic synthesis of composite hollow microfibers for K+-responsive controlled release based on a host-guest system[J]. Journal of Materials Chemistry B, 2016, 4(22): 3925-3935. |
14 | Cho S, Shim T S, Yang S M. High-throughput optofluidic platforms for mosaicked microfibers toward multiplex analysis of biomolecules[J]. Lab on a Chip, 2012, 12(19): 3676-3679. |
15 | Park S, Guo Y Y, Jia X T, et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 2017, 20(4): 612-619. |
16 | Yu Y R, Fu F F, Shang L R, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials, 2017, 29(18): 1605765. |
17 | Guo J H, Yu Y R, Cai L J, et al. Microfluidics for flexible electronics[J]. Materials Today, 2021, 44: 105-135. |
18 | Wen G Q, Xie R, Liang W G, et al. Microfluidic fabrication and thermal characteristics of core-shell phase change microfibers with high paraffin content[J]. Applied Thermal Engineering, 2015, 87: 471-480. |
19 | Zhao Y, Cao X Y, Jiang L. Bio-mimic multichannel microtubes by a facile method[J]. Journal of the American Chemical Society, 2007, 129(4): 764-765. |
20 | 姚子琪, 马东明, 雷文龙, 等. 熔体静电纺丝直写技术在组织工程中的应用进展[J]. 化工进展, 2019, 38(8): 3756-3762. |
Yao Z Q, Ma D M, Lei W L, et al. Progress in melt electrospinning direct writing technology in tissue engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3756-3762. | |
21 | Hu M, Deng R S, Schumacher K M, et al. Hydrodynamic spinning of hydrogel fibers[J]. Biomaterials, 2010, 31(5): 863-869. |
22 | Deng K, Liu Z, Luo F, et al. Controllable fabrication of polyethersulfone hollow fiber membranes with a facile double co-axial microfluidic device[J]. Journal of Membrane Science, 2017, 526: 9-17. |
23 | Lyu H L, Liu J R, Qiu S, et al. Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance[J]. Journal of Materials Chemistry A, 2016, 4(25): 9881-9889. |
24 | Hufenus R, Reifler F A, Maniura-Weber K, et al. Biodegradable bicomponent fibers from renewable sources: melt-spinning of poly(lactic acid) and poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)][J]. Macromolecular Materials and Engineering, 2012, 297(1): 75-84. |
25 | Pinto T V, Fernandes D M, Guedes A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology[J]. Chemical Engineering Journal, 2018, 350: 856-866. |
26 | Nunes J K, Tsai S S H, Wan J, et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis[J]. Journal of Physics D: Applied Physics, 2013, 46(11): 114002. |
27 | 何淑兰, 尹玉姬, 张敏, 等. 组织工程用海藻酸盐水凝胶的研究进展[J]. 化工进展, 2004,23 (11): 1174-1178. |
He S L, Yin Y J, Zhang M, et al. Research advances on sodium alginate hydrogels for tissue engineering[J]. Chemical Industry and Engineering Progress, 2004, 23(11): 1174-1178. | |
28 | Choi C H, Yi H, Hwang S, et al. Microfluidic fabrication of complex-shaped microfibers by liquid template-aided multiphase microflow[J]. Lab on a Chip, 2011, 11(8): 1477-1483. |
29 | He X H, Wang W, Deng K, et al. Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures[J]. RSC Advances, 2015, 5(2): 928-936. |
30 | Du X Y, Li Q, Wu G, et al. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology[J]. Advanced Materials, 2019, 31(52): 1903733. |
31 | Shin S J, Park J Y, Lee J Y, et al. "On the fly" continuous generation of alginate fibers using a microfluidic device[J]. Langmuir, 2007, 23(17): 9104-9108. |
32 | Sharifi F, Kurteshi D, Hashemi N. Designing highly structured polycaprolactone fibers using microfluidics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61: 530-540. |
33 | Xiao Y, Yang C J, Guo B L, et al. Bioinspired strong and tough organic-inorganic hybrid fibers[J]. Small Structures, 2023, 4(10): 2300080. |
34 | Xiao Y, Yang C J, Zhai X W, et al. Bioinspired tough and strong fibers with hierarchical core-shell structure[J]. Advanced Materials Interfaces, 2023, 10(2): 2201962. |
35 | Cheng Y, Zheng F Y, Lu J, et al. Bioinspired multicompartmental microfibers from microfluidics[J]. Advanced Materials, 2014, 26(30): 5184-5190. |
36 | Zhou M L, Gong J H, Ma J H. Continuous fabrication of near-infrared light responsive bilayer hydrogel fibers based on microfluidic spinning[J]. e-Polymers, 2019, 19(1): 215-224. |
37 | Yao K, Li W, Li K Y, et al. Simple fabrication of multicomponent heterogeneous fibers for cell co-culture via microfluidic spinning[J]. Macromolecular Bioscience, 2020, 20(3): 1900395. |
38 | Yoon D H, Kobayashi K, Tanaka D, et al. Simple microfluidic formation of highly heterogeneous microfibers using a combination of sheath units[J]. Lab on a Chip, 2017, 17(8): 1481-1486. |
39 | Lan W J, Du Y J, Guo X Q, et al. Flexible microfluidic fabrication of anisotropic polymer microfibers[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 212-219. |
40 | Thangawng A L, Howell P B, Spillmann C M, et al. UV polymerization of hydrodynamically shaped fibers[J]. Lab on a Chip, 2011, 11(6): 1157-1160. |
41 | Lan W J, Li S W, Lu Y C, et al. Controllable preparation of microscale tubes with multiphase co-laminar flow in a double co-axial microdevice[J]. Lab on a Chip, 2009, 9(22): 3282-3288. |
42 | Lan W J, Li S W, Xu J H, et al. Preparation and carbon dioxide separation performance of a hollow fiber supported ionic liquid membrane[J]. Industrial & Engineering Chemistry Research, 2013, 52(20): 6770-6777. |
[1] | Yangke XIAO, Yinlong CHANG, Ping LI, Wenjun WANG, Bogeng LI, Pingwei LIU. Review on polyolefin elastomers with dynamic-chemical cross-linking [J]. CIESC Journal, 2024, 75(4): 1394-1413. |
[2] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[3] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[4] | Da RUAN, Jingjing HOU, Ziyi BO, Shuaishuai ZHANG, Xuehu MA. Study of thin liquid film thickness and fluctuation pattern of annular flow in microchannel [J]. CIESC Journal, 2024, 75(11): 4178-4187. |
[5] | Dewang ZHANG, Qiankun ZHAO, Xiaoni GUO, Chaoqun YAO, Guangwen CHEN. Flow and mass transfer characteristics of Newtonian/non-Newtonian liquid-liquid flow in a microreactor [J]. CIESC Journal, 2024, 75(11): 4162-4169. |
[6] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[7] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[8] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[9] | Dawei PAN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Progress on regulation of meso-scale structures for microfluidic emulsion-template synthesis of functional microparticles [J]. CIESC Journal, 2022, 73(6): 2306-2317. |
[10] | Zhihao WANG, Xin SONG, Yaran YIN, Xianming ZHANG. Regulation of gelation rate on the morphology of helical fibers during microfluidic spinning [J]. CIESC Journal, 2022, 73(11): 5158-5166. |
[11] | Wei ZHAN, Xiyang LIU, Chunying ZHU, Youguang MA, Taotao FU. Study on the flow patterns and transition mechanism of the liquid-liquid two-phase flow in a step-emulsification microdevice with parallel microchannels [J]. CIESC Journal, 2022, 73(1): 184-193. |
[12] | Yingjie FEI, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction [J]. CIESC Journal, 2022, 73(1): 213-221. |
[13] | Wenjun MA, Zhuo CHEN, Sida LING, Jingwei ZHANG, Jianhong XU. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device [J]. CIESC Journal, 2022, 73(1): 434-440. |
[14] | WANG Changliang, TIAN Maocheng. Experimental research on low Reynolds number liquid-liquid two-phase flow and heat transfer characteristics in micro channels [J]. CIESC Journal, 2021, 72(3): 1322-1332. |
[15] | CHEN Zhen, LIU Jing, ZHU Chunying, FU Taotao, MA Youguang. Formation and size prediction of bubble in slurry system in T-junction microchannel [J]. CIESC Journal, 2021, 72(2): 928-936. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 179
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||