CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1096-1104.DOI: 10.11949/0438-1157.20231406
• Reviews and monographs • Previous Articles Next Articles
Mengqi LIU(), Kai WANG(), Guangsheng LUO
Received:
2023-12-31
Revised:
2024-03-11
Online:
2024-06-06
Published:
2024-04-25
Contact:
Kai WANG
通讯作者:
王凯
作者简介:
刘梦绮(2000—),女,博士研究生,liumengqi27@163.com
基金资助:
CLC Number:
Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence[J]. CIESC Journal, 2024, 75(4): 1096-1104.
刘梦绮, 王凯, 骆广生. 基于人工智能的微分散基础研究[J]. 化工学报, 2024, 75(4): 1096-1104.
Add to citation manager EndNote|Ris|BibTeX
几何结构 | 半经验关联式 | 适用范围 | 文献 |
---|---|---|---|
T型微通道 | d/W =2.7(Cad/Cac)0.19 | 0.0003<Cac<0.1 | [ |
毛细管嵌入T型微通道 | d/W = 0.75(Qd/Qc)1/3Cac–1/5 | 0.002<Cac<0.01 | [ |
毛细管嵌入阶梯T型微通道 | d/W = 1.10(Qd/Qc)0.49(μd/μc)0.02 | Cac>0.07 | [ |
聚焦流微通道 | d/W = 0.88(Qd/Qc)0.18Cad–0.15 | 0.002<Cac<0.223 | [ |
聚焦流微通道 | d/W = 1.29(Qd/Qc)0.17Cac–0.1 | 0.00065<Cac<0.2 | [ |
Table 1 Semi-empirical correlations for droplet size in different microdispersion channel
几何结构 | 半经验关联式 | 适用范围 | 文献 |
---|---|---|---|
T型微通道 | d/W =2.7(Cad/Cac)0.19 | 0.0003<Cac<0.1 | [ |
毛细管嵌入T型微通道 | d/W = 0.75(Qd/Qc)1/3Cac–1/5 | 0.002<Cac<0.01 | [ |
毛细管嵌入阶梯T型微通道 | d/W = 1.10(Qd/Qc)0.49(μd/μc)0.02 | Cac>0.07 | [ |
聚焦流微通道 | d/W = 0.88(Qd/Qc)0.18Cad–0.15 | 0.002<Cac<0.223 | [ |
聚焦流微通道 | d/W = 1.29(Qd/Qc)0.17Cac–0.1 | 0.00065<Cac<0.2 | [ |
模型类型 | 输入特征 | 输出目标 | 数据量 | 尺寸预测准确性 | 文献 |
---|---|---|---|---|---|
ANN | Red、Rec、Cac、Cad | 液滴尺寸 | 742 | R2≈1 | [ |
ANFIS | Ca、μd/μc、Qd/Qc | 液滴尺寸 | 36 | R2=0.92 | [ |
ANFIS | 狭缝宽度Or、Qc、Qd、μc、μd、ρc | 液滴尺寸 | 51 | R2=0.96 | [ |
ANN | 聚合物浓度、Qc、Qd、微通道组合形式 | 液滴或颗粒尺寸 | 223 | R2=0.971 | [ |
ANN | Ca、Qd/Qc、连续相通道宽度Wc、分散相通道宽度Wd、Or、缩口长度L、下游通道宽度Wm、通道深度H | 液滴尺寸,生成频率 | 998 | R2=0.893(滴状流), R2=0.966(射流) | [ |
DNN | Wed、Wec、Ca、Qd/Qc、dl 、dg、dm、αlm、αgm | 气泡尺寸 | 854 | MRE=2.02% | [ |
BRANN XGBoost | Qc、Qd、γ、浓度比ϕ/ϕCMC | 液滴尺寸 | 468 | MAPE=3.9% | [ |
DNN Deep-FM | Ca、通道夹角、Qd/Qc、μd/μc | 液滴尺寸 | 298 | MRE=4.09% | [ |
ANN | 饱和度、Qc、Qd、通道夹角、W | 颗粒尺寸 | 71 | R2=0.89 | [ |
Table 2 Artificial intelligence models applied to the prediction of microdispersion processes
模型类型 | 输入特征 | 输出目标 | 数据量 | 尺寸预测准确性 | 文献 |
---|---|---|---|---|---|
ANN | Red、Rec、Cac、Cad | 液滴尺寸 | 742 | R2≈1 | [ |
ANFIS | Ca、μd/μc、Qd/Qc | 液滴尺寸 | 36 | R2=0.92 | [ |
ANFIS | 狭缝宽度Or、Qc、Qd、μc、μd、ρc | 液滴尺寸 | 51 | R2=0.96 | [ |
ANN | 聚合物浓度、Qc、Qd、微通道组合形式 | 液滴或颗粒尺寸 | 223 | R2=0.971 | [ |
ANN | Ca、Qd/Qc、连续相通道宽度Wc、分散相通道宽度Wd、Or、缩口长度L、下游通道宽度Wm、通道深度H | 液滴尺寸,生成频率 | 998 | R2=0.893(滴状流), R2=0.966(射流) | [ |
DNN | Wed、Wec、Ca、Qd/Qc、dl 、dg、dm、αlm、αgm | 气泡尺寸 | 854 | MRE=2.02% | [ |
BRANN XGBoost | Qc、Qd、γ、浓度比ϕ/ϕCMC | 液滴尺寸 | 468 | MAPE=3.9% | [ |
DNN Deep-FM | Ca、通道夹角、Qd/Qc、μd/μc | 液滴尺寸 | 298 | MRE=4.09% | [ |
ANN | 饱和度、Qc、Qd、通道夹角、W | 颗粒尺寸 | 71 | R2=0.89 | [ |
1 | Kim B, Jeon T Y, Oh Y K, et al. Microfluidic production of semipermeable microcapsules by polymerization-induced phase separation[J]. Langmuir, 2015, 31(22): 6027-6034. |
2 | Porta R, Benaglia M, Puglisi A. Flow chemistry: recent developments in the synthesis of pharmaceutical products[J]. Organic Process Research & Development, 2016, 20(1): 2-25. |
3 | Matuła K, Rivello F, Huck W T S. Single-cell analysis using droplet microfluidics[J]. Advanced Biosystems, 2020, 4(1): e1900188. |
4 | Wang K, Luo G. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
5 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2017, 17(1): 34-75. |
6 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
7 | Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364. |
8 | Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid[J]. Chemical Engineering Science, 2004, 59(15): 3045-3058. |
9 | Wang K, Lu Y C, Xu J H, et al. Droplet generation in micro-sieve dispersion device[J]. Microfluidics and Nanofluidics, 2011, 10(5): 1087-1095. |
10 | Wang K, Lu Y C, Shao H W, et al. Heat-transfer performance of a liquid-liquid microdispersed system[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9754-9758. |
11 | Sheng L, Wang K, Deng J, et al. Gas-liquid microdispersion and microflow for carbon dioxide absorption and utilization: a review[J]. Current Opinion in Chemical Engineering, 2023, 40: 100917. |
12 | Lashkaripour A, Rodriguez C, Ortiz L, et al. Performance tuning of microfluidic flow-focusing droplet generators[J]. Lab on a Chip, 2019, 19(6): 1041-1053. |
13 | Faustino V, Catarino S O, Lima R, et al. Biomedical microfluidic devices by using low-cost fabrication techniques: a review[J]. Journal of Biomechanics, 2016, 49(11): 2280-2292. |
14 | Battat S, Weitz D A, Whitesides G M. An outlook on microfluidics: the promise and the challenge[J]. Lab on a Chip, 2022, 22(3): 530-536. |
15 | Kashid M N, Renken A, Kiwi-Minsker L. Influence of flow regime on mass transfer in different types of microchannels[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6906-6914. |
16 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
17 | Korczyk P M, van Steijn V, Blonski S, et al. Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels[J]. Nature Communications, 2019, 10: 2528. |
18 | 陈宇超, 崔永晋, 王凯, 等. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273. |
Chen Y C, Cui Y J, Wang K, et al. Droplet and bubble dispersion in step T-junction microchannel[J]. CIESC Journal, 2020, 71(1): 265-273. | |
19 | Shen C, Zheng Q B, Shang M J, et al. Using deep learning to recognize liquid–liquid flow patterns in microchannels[J]. AIChE Journal, 2020, 66(8): e16260. |
20 | Nunes J K, Tsai S S H, Wan J, et al. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis[J]. Journal of Physics D: Applied Physics, 2013, 46(11): 114002. |
21 | Christopher G F, Anna S L. Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D: Applied Physics, 2007, 40(19): R319-R336. |
22 | Asadi-Saghandi H, Karimi-Sabet J, Ghorbanian S, et al. Dimensionless analysis on liquid-liquid two-phase flow patterns in a numbered-up microfluidic device[J]. Chemical Engineering Journal, 2022, 429: 132428. |
23 | Odera T, Hirama H, Kuroda J, et al. Droplet formation behavior in a microfluidic device fabricated by hydrogel molding[J]. Microfluidics and Nanofluidics, 2014, 17(3): 469-476. |
24 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
25 | Li Y K, Liu G T, Xu J H, et al. A microdevice for producing monodispersed droplets under a jetting flow[J]. RSC Advances, 2015, 5(35): 27356-27364. |
26 | Fu T T, Ma Y G, Li H Z. Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices[J]. Chemical Engineering Science, 2016, 144: 75-86. |
27 | Lu Y T, Fu T T, Zhu C Y, et al. Scaling of the bubble formation in a flow-focusing device: role of the liquid viscosity[J]. Chemical Engineering Science, 2014, 105: 213-219. |
28 | Liu Z M, Zhao J, Pang Y, et al. Generation of droplets in the T-junction with a constriction microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(11): 124. |
29 | Riordon J, Sovilj D, Sanner S, et al. Deep learning with microfluidics for biotechnology[J]. Trends in Biotechnology, 2019, 37(3): 310-324. |
30 | Srikanth S, Dubey S K, Javed A, et al. Droplet based microfluidics integrated with machine learning[J]. Sensors and Actuators A: Physical, 2021, 332: 113096. |
31 | McIntyre D, Lashkaripour A, Fordyce P, et al. Machine learning for microfluidic design and control[J]. Lab on a Chip, 2022, 22(16): 2925-2937. |
32 | Goda K, Lu H, Fei P, et al. Revolutionizing microfluidics with artificial intelligence: a new dawn for lab-on-a-chip technologies[J]. Lab on a Chip, 2023, 23(17): 3737-3740. |
33 | Isozaki A, Harmon J, Zhou Y Q, et al. AI on a chip[J]. Lab on a Chip, 2020, 20(17): 3074-3090. |
34 | Dedeloudi A, Weaver E, Lamprou D A. Machine learning in additive manufacturing & microfluidics for smarter and safer drug delivery systems[J]. International Journal of Pharmaceutics, 2023, 636: 122818. |
35 | Zhang S Y, Li H R, Wang K, et al. Accelerating intelligent microfluidic image processing with transfer deep learning: a microchannel droplet/bubble breakup case study[J]. Separation and Purification Technology, 2023, 315: 123703. |
36 | Chu A, Nguyen D, Talathi S S, et al. Automated detection and sorting of microencapsulation via machine learning[J]. Lab on a Chip, 2019, 19(10): 1808-1817. |
37 | Zhang S Y, Qin K, Huang X Y, et al. Insight into microdispersion flows with a novel video deep learning method[J]. Advanced Intelligent Systems, 2022, 4(11): 2200098. |
38 | Durve M, Bonaccorso F, Montessori A, et al. A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2208): 20200400. |
39 | Mahdi Y, Daoud K. Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation[J]. Journal of Dispersion Science and Technology, 2017, 38(10): 1501-1508. |
40 | Mottaghi S, Nazari M, Fattahi S M, et al. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system[J]. Biomedical Microdevices, 2020, 22(3): 61. |
41 | Lashkaripour A, Goharimanesh M, Abouei Mehrizi A, et al. An adaptive neural-fuzzy approach for microfluidic droplet size prediction[J]. Microelectronics Journal, 2018, 78: 73-80. |
42 | Damiati S A, Rossi D, Joensson H N, et al. Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics[J]. Scientific Reports, 2020, 10: 19517. |
43 | Lashkaripour A, Rodriguez C, Mehdipour N, et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation[J]. Nature Communications, 2021, 12: 25. |
44 | Chang Y, Sheng L, Wang J J, et al. A general neural network model co-driven by mechanism and data for the reliable design of gas-liquid T-junction microdevices[J]. Lab on a Chip, 2023, 23(22): 4888-4900. |
45 | Chagot L, Quilodrán-Casas C, Kalli M, et al. Surfactant-laden droplet size prediction in a flow-focusing microchannel: a data-driven approach[J]. Lab on a Chip, 2022, 22(20): 3848-3859. |
46 | Wang J X, Yu W, Wu Z, et al. Physics-based statistical learning perspectives on droplet formation characteristics in microfluidic cross-junctions[J]. Applied Physics Letters, 2022, 120(20): 204101. |
47 | Ali H S M, Blagden N, York P, et al. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors[J]. European Journal of Pharmaceutical Sciences, 2009, 37(3): 514-522. |
48 | Khor J W, Jean N, Luxenberg E S, et al. Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel[J]. Soft Matter, 2019, 15(6): 1361-1372. |
49 | Han S, Kim T, Kim D, et al. Use of deep learning for characterization of microfluidic soft sensors[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 873-880. |
50 | Dressler O J, Howes P D, Choo J, et al. Reinforcement learning for dynamic microfluidic control[J]. ACS Omega, 2018, 3(8): 10084-10091. |
51 | Gyimah N, Scheler O, Rang T, et al. Deep reinforcement learning-based digital twin for droplet microfluidics control[J]. Physics of Fluids, 2023, 35(8): 082020. |
52 | Fukada K, Seyama M. Microfluidic devices controlled by machine learning with failure experiments[J]. Analytical Chemistry, 2022, 94(19): 7060-7065. |
53 | Siemenn A E, Shaulsky E, Beveridge M, et al. A machine learning and computer vision approach to rapidly optimize multiscale droplet generation[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4668-4679. |
54 | Mekki-Berrada F, Ren Z K, Huang T, et al. Two-step machine learning enables optimized nanoparticle synthesis[J]. Computational Materials, 2021, 7: 55. |
55 | Probst P Boulesteix A L, Bischl B. Tunability: importance of hyperparameters of machine learning algorithms[J]. The Journal of Machine Learning Research, 2019, 20(1): 1934-1965. |
[1] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[2] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[3] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[4] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[5] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[6] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[7] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[8] | Ning LI, Pengfei ZHU, Lifeng ZHANG, Dongchen LU. Image reconstruction of electrical capacitance tomography based on non-convex and nonseparable regularization algorithm [J]. CIESC Journal, 2024, 75(3): 836-846. |
[9] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[10] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[11] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[12] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[13] | Rui SUN, Hua TIAN, Zirui WU, Xiaocun SUN, Gequn SHU. Study on the critical properties calculation models of CO2-based binary mixture working fluid [J]. CIESC Journal, 2024, 75(2): 439-449. |
[14] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[15] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||