CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1455-1468.DOI: 10.11949/0438-1157.20231328
• Reviews and monographs • Previous Articles Next Articles
Xiaoying JI1,2(), Yuan ZHENG3, Xiaopeng LI1,2, Zhen YANG1,2, Wei ZHANG4, Shirui QIU4, Qianying ZHANG1,2, Canghai LUO3, Dongpeng SUN3, Dong CHEN3(), Dongliang LI1,2()
Received:
2023-12-13
Revised:
2024-02-02
Online:
2024-06-06
Published:
2024-04-25
Contact:
Dong CHEN, Dongliang LI
吉笑盈1,2(), 郑园3, 李晓鹏1,2, 杨振1,2, 张维4, 邱诗蕊4, 张倩颖1,2, 罗沧海3, 孙东鹏3, 陈东3(), 李东亮1,2()
通讯作者:
陈东,李东亮
作者简介:
吉笑盈(1990—),女,博士,工程师,jixychen@163.com
基金资助:
CLC Number:
Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications[J]. CIESC Journal, 2024, 75(4): 1455-1468.
吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Controlled preparation of droplets by microfluidics and their applications: (a) Controlled preparation of one-, two- and three-component droplets by PDMS and glass-capillary microfluidic devices[41-42]; (b) Oil-in-water food emulsions prepared by microfluidics, sunflower oil is emulsified into droplets and stabilized by soybean proteins[30]; (c) Microfluidic 3D droplet printing for the controlled preparation of droplet arrays[48](droplet arrays are embedded in the elastomer matrix as functional units), multi-shape, multi-mode and multi-step deformations can be achieved by different stimuli; (d) Randomly distributed droplet suspension prepared by microfludics and ordered droplet suspension prepared by microfluidic 3D droplet printing[49,51]
Fig.3 Controlled preparation of particles using single-emulsion droplets as templates and their applications: (a) Preparation of carotenoid-loaded particles by solvent evaporation and their applications as natural colorants for food[57]; (b) Preparation of cell-loaded hydrogel particles by ionic crosslinking and their applications for cell culture[59]; (c) Preparation of drug-loaded hydrogel particles by photo-triggered crosslinking and their applications for arthritis treatment[60]; (d) Preparation of stem cell-loaded porous particles by photo-triggered crosslinking and their applications for bone regeneration[61]; (e) Preparation of drug-loaded particles by chemical crosslinking and their applications for oncology therapy[29]; (f) Preparation of hydrogel particles as cell growth scaffolds by chemical crosslinking and their applications for tissue regeneration[62]
Fig.4 Controlled preparation of core-shell droplets and capsules and their applications: (a) Controlled preparation of single- and multi-core droplets by PDMS and glass-capillary microfluidic devices[42, 65]; (b) Controlled preparation of single- and multi-core droplets by microfluidic 3D droplet printing[71]; (c) Oil-core capsules prepared using single droplets as templates and by solvent evaporation[73]; (d) Hydrogel capsules with hepatocytes in the core and fibroblasts in the shell prepared using core-shell droplets as templates and by ionic crosslinking, which are used as liver organoids[75]; (e) Thin-shell water-core capsules prepared using thin-shell core-shell droplets as templates and by solvent evaporation, whose release could be triggered by osmotic pressure[76]
Fig.5 Two- and three-phase computational fluid dynamics (CFD) simulations of the formation of single droplets and core-shell droplets: (a) Two-phase CFD simulations of the droplet formation by shearing water with air[83], water is the dispersed phase and air is the continuous phase; (b) Comparison of CFD and experimental results on droplet diameter as a function of air flow rate and inner tube size[83], CFD simulations use the same parameters as those of experiments, such as inner and outer tube diameters, water viscosity, water density, water flow rate, air viscosity, air density and air flow rate; (c) Three-phase CFD simulations of the formation of core-shell droplets[84], the oil phase is the inner phase, the aqueous phase is the middle phase, and air is the continuous phase; (d) CFD results on capsule diameter, core diameter and shell thickness as a function of oil/water and water/air interfacial tensions[84], CFD simulations use the same parameters as those of experiments, such as inner and outer tube diameters, oil viscosity, oil density, oil flow rate, water viscosity, water density, water flow rate, air viscosity and air density
Fig.6 Scale-up by parallelization of microfluidic emulsification units: (a) Scale-up design based on parallel dendrites[87]; (b) Scale-up design based on divergent dendrites[88]; (c) Scale-up design based on main-branch structures[24]
38 | Chen Z H, Lv Z D, Zhang Z, et al. Biomaterials for microfluidic technology[J]. Materials Futures, 2022, 1(1): 012401. |
39 | Chen X, Liang D N, Sun W J, et al. Suspended bubble microcapsule delivery systems from droplet microfluidic technology for the local treatment of gastric cancer[J]. Chemical Engineering Journal, 2023, 458: 141428. |
40 | Ravanfar R, Comunian T A, Dando R, et al. Optimization of microcapsules shell structure to preserve labile compounds: a comparison between microfluidics and conventional homogenization method[J]. Food Chemistry, 2018, 241: 460-467. |
41 | Schroen K, Berton-Carabin C, Renard D, et al. Droplet microfluidics for food and nutrition applications[J]. Micromachines, 2021, 12(8): 863. |
42 | Vladisavljević G T, Khalid N, Neves M A, et al. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12): 1626-1663. |
43 | Vladisavljević G, Al Nuumani R, Nabavi S. Microfluidic production of multiple emulsions[J]. Micromachines, 2017, 8(3): 75. |
44 | Moragues T, Arguijo D, Beneyton T, et al. Droplet-based microfluidics[J]. Nature Reviews Methods Primers, 2023, 3: 32. |
45 | Hua W J, Mitchell K, Raymond L, et al. Embedded 3D printing of PDMS-based microfluidic chips for biomedical applications[J]. Journal of Manufacturing Science and Engineering, 2023, 145(1): 011002. |
46 | Manimaran N H, Usman H, Kamga K L, et al. Developing a functional poly(dimethylsiloxane)-based microbial nanoculture system using dimethylallylamine[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50581-50591. |
47 | Ortiz R, Chen J L, Stuckey D C, et al. Poly(methyl methacrylate) surface modification for surfactant-free real-time toxicity assay on droplet microfluidic platform[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13801-13811. |
48 | Yang C J, Xiao Y, Hu L J, et al. Stimuli-triggered multishape, multimode, and multistep deformations designed by microfluidic 3D droplet printing[J]. Small, 2023, 19(11): e2207073. |
49 | 陈东, 孙泽勇, 王行政, 等. 一种利用微流控装置制备悬浮微液滴的方法: 109569344B[P]. 2021-01-08. |
Chen D, Sun Z Y, Wang X Z, et al. Method for preparing suspended micro-droplets through microflow control device: 109569344B[P]. 2021-01-08. | |
50 | Guo X F, Zhang B J, Wei S S, et al. Droplet microfluidic-based low-cost and high-speed microsphere array direct writing technology and its applications[J]. ACS Applied Materials & Interfaces, 2023, 15(26): 32047-32056. |
51 | 陈东, 孙泽勇, 王行政, 等. 一种3D液滴打印机及其制备悬浮液滴的方法: 109249617B[P]. 2020-11-17. |
Chen D, Sun Z Y, Wang X Z, et al. 3D droplet printer and method for preparing suspended droplets: 109249617B[P]. 2020-11-17. | |
52 | Wang J T, Wang J, Han J J. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics[J]. Small, 2011, 7(13): 1728-1754. |
53 | 张彦, 汪伟, 谢锐, 等. 负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
Zhang Y, Wang W, Xie R, et al. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. | |
54 | Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions[J]. Accounts of Chemical Research, 2014, 47(2): 373-384. |
55 | Chebil A, Funfschilling D, Léonard M, et al. Amphiphilic polysaccharides acting both as stabilizers and surface modifiers during emulsification in microfluidic flow-focusing junction[J]. ACS Applied Bio Materials, 2018, 1(3): 879-887. |
56 | Dias Meirelles A A, Rodrigues Costa A L, Michelon M, et al. Microfluidic approach to produce emulsion-filled alginate microgels[J]. Journal of Food Engineering, 2022, 315: 110812. |
57 | Chen D, Zhao C X, Lagoin C, et al. Dispersing hydrophobic natural colourant β-carotene in shellac particles for enhanced stability and tunable colour[J]. Royal Society Open Science, 2017, 4(12): 170919. |
58 | Zhao Z Y, Wang Z, Li G, et al. Injectable microfluidic hydrogel microspheres for cell and drug delivery[J]. Advanced Functional Materials, 2021, 31(31): 2103339. |
1 | 孙东鹏, 郑园, 陈东. 微流控在二氧化碳捕集、利用与封存的研究[J]. 能源环境保护, 2023, 37(2): 117-124. |
Sun D P, Zheng Y, Chen D. Applications of microfluidics in carbon capture, utilization and storage[J]. Energy Environmental Protection, 2023, 37(2): 117-124. | |
2 | Lee T Y, Choi T M, Shim T S, et al. Microfluidic production of multiple emulsions and functional microcapsules[J]. Lab on a Chip, 2016, 16(18): 3415-3440. |
3 | Yadavali S, Jeong H H, Lee D, et al. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles[J]. Nature Communications, 2018, 9: 1222. |
4 | 张仕凯, 罗沧海, 郑园, 等. 微反应器强化传热传质在化工过程的应用[J]. 能源环境保护, 2023, 37(5): 174-182. |
Zhang S K, Luo C H, Zheng Y, et al. Enhancements of mass transfer and heat transfer by microreactors and their applications in chemical engineering[J]. Energy Environmental Protection, 2023, 37(5): 174-182. | |
5 | Shah R K, Shum H C, Rowat A C, et al. Designer emulsions using microfluidics[J]. Materials Today, 2008, 11(4): 18-27. |
6 | Wei D, Sun J, Bolderson J, et al. Continuous fabrication and assembly of spatial cell-laden fibers for a tissue-like construct via a photolithographic-based microfluidic chip[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14606-14617. |
7 | Çoğun F, Yıldırım E, Sahir Arikan M A. Investigation on replication of microfluidic channels by hot embossing[J]. Materials and Manufacturing Processes, 2017, 32(16): 1838-1844. |
8 | Zhang J, Xu W H, Xu F Y, et al. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing[J]. Journal of Food Engineering, 2021, 290: 110212. |
9 | Michelon M, Leopercio B C, Carvalho M S. Microfluidic production of aqueous suspensions of gellan-based microcapsules containing hydrophobic compounds[J]. Chemical Engineering Science, 2020, 211: 115314. |
10 | Paquet C, Jakubek Z J, Simard B. Superparamagnetic microspheres with controlled macroporosity generated in microfluidic devices[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4934-4941. |
11 | Zhang X J, Malhotra S, Molina M, et al. Micro- and nanogels with labile crosslinks—from synthesis to biomedical applications[J]. Chemical Society Reviews, 2015, 44(7): 1948-1973. |
12 | Lin P C, Chen H B, Li A, et al. Bioinspired multiple stimuli-responsive optical microcapsules enabled by microfluidics[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46788-46796. |
13 | Thorne M F, Simkovic F, Slater A G. Production of monodisperse polyurea microcapsules using microfluidics[J]. Scientific Reports, 2019, 9: 17983. |
14 | Qin Y, Lu X Y, Que H, et al. Preparation and characterization of pendimethalin microcapsules based on microfluidic technology[J]. ACS Omega, 2021, 6(49): 34160-34172. |
15 | Abedi S, Suteria N S, Chen C C, et al. Microfluidic production of size-tunable hexadecane-in-water emulsions: effect of droplet size on destabilization of two-dimensional emulsions due to partial coalescence[J]. Journal of Colloid and Interface Science, 2019, 533: 59-70. |
16 | Vu T V, Homma S, Tryggvason G, et al. Computations of breakup modes in laminar compound liquid jets in a coflowing fluid[J]. International Journal of Multiphase Flow, 2013, 49: 58-69. |
17 | Chaves I L, Duarte L C, Coltro W K T, et al. Droplet length and generation rate investigation inside microfluidic devices by means of CFD simulations and experiments[J]. Chemical Engineering Research and Design, 2020, 161: 260-270. |
18 | Wu L Y, Qian J, Liu X Y, et al. Numerical modelling for the droplets formation in microfluidics — a review[J]. Microgravity Science and Technology, 2023, 35(3): 26. |
19 | Souza L, Al-Tabbaa A. Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials[J]. Construction and Building Materials, 2018, 184: 713-722. |
20 | Souilem S, Kobayashi I, Neves M A, et al. Preparation of monodisperse food-grade oleuropein-loaded W/O/W emulsions using microchannel emulsification and evaluation of their storage stability[J]. Food and Bioprocess Technology, 2014, 7(7): 2014-2027. |
21 | Luo Z X, Zhao G, Panhwar F, et al. Well-designed microcapsules fabricated using droplet-based microfluidic technique for controlled drug release[J]. Journal of Drug Delivery Science and Technology, 2017, 39: 379-384. |
22 | Park D, Kim H, Kim J W. Microfluidic production of monodisperse emulsions for cosmetics[J]. Biomicrofluidics, 2021, 15(5): 051302. |
59 | An C F, Liu W J, Zhang Y, et al. Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration[J]. Acta Biomaterialia, 2020, 111: 181-196. |
60 | Han Y, Yang J L, Zhao W W, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis[J]. Bioactive Materials, 2021, 6(10): 3596-3607. |
61 | Wu J Z, Li G, Ye T J, et al. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration[J]. Chemical Engineering Journal, 2020, 393: 124715. |
62 | Griffin D R, Weaver W M, Scumpia P O, et al. Accelerated wound healing by injectable microporous gel scaffolds assembled fromannealed building blocks[J]. Nature Materials, 2015, 14: 737-744. |
63 | Kim S, Chu L Y. Microfluidics: advanced platform for designing polymeric microparticles, microcapsules, and microfibers[J]. Journal of Polymer Science, 2022, 60(11): 1651-1652. |
64 | Amato D V, Lee H, Werner J G, et al. Functional microcapsules via thiol-ene photopolymerization in droplet-based microfluidics[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3288-3293. |
65 | Lee D, Weitz D A. Nonspherical colloidosomes with multiple compartments from double emulsions[J]. Small, 2009, 5(17): 1932-1935. |
66 | Huang L Y, Wu K, He X H, et al. One-step microfluidic synthesis of spherical and bullet-like alginate microcapsules with a core-shell structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125612. |
67 | Arevalo-Gallegos A, Cuellar-Bermudez S P, Melchor-Martinez E M, et al. Comparison of alginate mixtures as wall materials of Schizochytrium oil microcapsules formed by coaxial electrospray[J]. Polymers, 2023, 15(12): 2756. |
68 | Cesur S, Cam M E, Sayın F S, et al. Metformin-loaded polymer-based microbubbles/nanoparticles generated for the treatment of type 2 diabetes mellitus[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(17): 5040-5051. |
69 | Navi M, Kieda J, Tsai S S H. Magnetic polyelectrolyte microcapsules via water-in-water droplet microfluidics[J]. Lab on a Chip, 2020, 20(16): 2851-2860. |
70 | Chen G P, Yu Y R, Wu X W, et al. Microfluidic electrospray niacin metal-organic frameworks encapsulated microcapsules for wound healing[J]. Research, 2019, 2019: 6175398. |
71 | Chen L, Xiao Y, Wu Q L, et al. Emulsion designer using microfluidic three-dimensional droplet printing in droplet[J]. Small, 2021, 17(39): e2102579. |
72 | 温霜, 巨晓洁, 谢锐, 等. 肠靶向海藻酸钙基微胶囊的制备及控释性能研究[J]. 化工学报, 2020, 71(8): 3797-3806. |
Wen S, Ju X J, Xie R, et al. Fabrication and controlled-release properties of intestinal-targeted Ca-alginate-based capsules[J]. CIESC Journal, 2020, 71(8): 3797-3806. | |
73 | Sun Z Y, Yang C J, Eggersdorfer M, et al. A general strategy for one-step fabrication of biocompatible microcapsules with controlled active release[J]. Chinese Chemical Letters, 2020, 31(1): 249-252. |
74 | Xing Y F, Liu J Y, Guo X J, et al. Engineering organoid microfluidic system for biomedical and health engineering: a review[J]. Chinese Journal of Chemical Engineering, 2021, 30: 244-254. |
75 | Chen Q S, Utech S, Chen D, et al. Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet[J]. Lab on a Chip, 2016, 16(8): 1346-1349. |
76 | Chen L, Xiao Y, Zhang Z M, et al. Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release[J]. Frontiers of Chemical Science and Engineering, 2022, 16(11): 1643-1650. |
77 | Rubio-Rubio M, Taconet P, Sevilla A. Dripping dynamics and transitions at high bond numbers[J]. International Journal of Multiphase Flow, 2018, 104: 206-213. |
78 | Nabavi S A, Vladisavljević G T, Bandulasena M V, et al. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification[J]. Journal of Colloid and Interface Science, 2017, 505: 315-324. |
79 | Sattari A, Hanafizadeh P. Controlled preparation of compound droplets in a double rectangular co-flowing microfluidic device[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125077. |
80 | 石盼, 颜肖潇, 王行政, 等. 一步法制备生物相容油核微胶囊及其可控释放[J]. 化工学报, 2021, 72(1): 619-627. |
Shi P, Yan X X, Wang X Z, et al. One-step fabrication of biocompatible oil-core microcapsules with controlled release[J]. CIESC Journal, 2021, 72(1): 619-627. | |
81 | Huang L Y, Wu K, Cai S H, et al. Understanding the microfluidic generation of double emulsion droplets with alginate shell[J]. Colloids and Surfaces B. Biointerfaces, 2023, 222: 113114. |
23 | Han T T, Zhang L, Xu H, et al. Factory-on-chip: modularised microfluidic reactors for continuous mass production of functional materials[J]. Chemical Engineering Journal, 2017, 326: 765-773. |
24 | Romanowsky M B, Abate A R, Rotem A, et al. High throughput production of single core double emulsions in a parallelized microfluidic device[J]. Lab on a Chip, 2012, 12(4): 802-807. |
25 | Eggersdorfer M L, Zheng W, Nawar S, et al. Tandem emulsification for high-throughput production of double emulsions[J]. Lab on a Chip, 2017, 17(5): 936-942. |
26 | Sun H, Xie W T, Mo J, et al. Deep learning with microfluidics for on-chip droplet generation, control, and analysis[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1208648. |
27 | Liu J, Lan Y, Yu Z Y, et al. Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials[J]. Accounts of Chemical Research, 2017, 50(2): 208-217. |
28 | 翟小威, 潘湄蝶, 石盼, 等. 一步法高通量可控制备生物相容水/水微囊及其响应释放[J]. 高等学校化学学报, 2022, 43(12): 335-344. |
Zhai X W, Pan M D, Shi P, et al. One-step high-throughput controlled preparation of biocompatible water/water microcapsules with triggered release[J]. Chemical Journal of Chinese Universities, 2022, 43(12): 335-344. | |
29 | He T X, Wang W B, Chen B S, et al. 5-Fluorouracil monodispersed chitosan microspheres: microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity[J]. Carbohydrate Polymers, 2020, 236: 116094. |
30 | Zhang T Y, Zhang X, Jin M Z, et al. Parameter control, characterization and stability of soy protein emulsion prepared by microfluidic technology[J]. Food Chemistry, 2023, 427: 136689. |
31 | Yang C J, Chen L, Zhang R, et al. Local high-density distributions of phospholipids induced by the nucleation and growth of smectic liquid crystals at the interface[J]. Chinese Chemical Letters, 2022, 33(8): 3973-3976. |
32 | Jo Y K, Lee D. Biopolymer microparticles prepared by microfluidics for biomedical applications[J]. Small, 2020, 16(9): e1903736. |
33 | Hamonangan W M, Lee S M, Choi Y H, et al. Osmosis-mediated microfluidic production of submillimeter-sized capsules with an ultrathin shell for cosmetic applications[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18159-18169. |
34 | Yao W N, Che J Y, Zhao C, et al. Treatment of Alzheimer's disease by microcapsule regulates neurotransmitter release via microfluidic technology[J]. Engineered Regeneration, 2023, 4(2): 183-192. |
35 | Wang Y H, Liu M Q, Zhang Y, et al. Recent methods of droplet microfluidics and their applications in spheroids and organoids[J]. Lab on a Chip, 2023, 23(5): 1080-1096. |
36 | Marquis M, Alix V, Capron I, et al. Microfluidic encapsulation of Pickering oil microdroplets into alginate microgels for lipophilic compound delivery[J]. ACS Biomaterials Science & Engineering, 2016, 2(4): 535-543. |
37 | Jeong H S, Kim E, Nam C, et al. Hydrogel microcapsules with a thin oil layer: smart triggered release via diverse stimuli[J]. Advanced Functional Materials, 2021, 31(18): 2009553. |
82 | 王炳捷, 李辉, 杨晓勇, 等. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735. |
Wang B J, Li H, Yang X Y, et al. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. | |
83 | Yang C J, Wu W, Gao Y, et al. Controlled preparation of droplets for cell encapsulation by air-focused microfluidic bioprinting[J]. International Journal of Bioprinting, 2024, 10(1): 1102. |
84 | 石盼. 微流控一步法制备微囊实验及其数值模拟研究[D]. 杭州: 浙江大学, 2022. |
Shi P. Experimental study on preparation of microcapsules by microfluidic one-step method and its numerical simulation[D]. Hangzhou: Zhejiang University, 2022. | |
85 | Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces[J]. Lab on a Chip, 2012, 12(18): 3426-3435. |
86 | 邓传富, 汪伟, 谢锐, 等. 液滴微流控的集成化放大方法研究进展[J]. 化工学报, 2021, 72(12): 5965-5974. |
Deng C F, Wang W, Xie R, et al. Recent progress in scale-up integration of microfluidic droplet generators[J]. CIESC Journal, 2021, 72(12): 5965-5974. | |
87 | Stolovicki E, Ziblat R, Weitz D A. Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance[J]. Lab on a Chip, 2018, 18(1): 132-138. |
88 | Conchouso D, Castro D, Khan S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions[J]. Lab on a Chip, 2014, 14(16): 3011-3020. |
89 | Jeong H H, Yelleswarapu V R, Yadavali S, et al. Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)[J]. Lab on a Chip, 2015, 15(23): 4387-4392. |
[1] | Chengxiu WANG, Dashan SONG, Zhihui LI, Xiao YANG, Xingying LAN, Jinsen GAO, Chunming XU. Stable flow characteristics of Geldart C particles of desulfurization ash in a loop-coupled riser [J]. CIESC Journal, 2024, 75(4): 1485-1496. |
[2] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[3] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[4] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[5] | Yansong CHEN, Da RUAN, Yuanbo LIU, Tong ZHENG, Shuaishuai ZHANG, Xuehu MA. Topology optimization and performance research of microchannel heat exchangers [J]. CIESC Journal, 2024, 75(3): 823-835. |
[6] | Baiping XU, Ruifeng LIANG, Huiwen YU, Guiqun WU, Shuping XIAO. Simulation of intra-cavity distribution mixing under the action of enhanced triangular rotor of twin-screw extruder [J]. CIESC Journal, 2024, 75(3): 858-866. |
[7] | Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor [J]. CIESC Journal, 2024, 75(3): 867-876. |
[8] | Nan TU, Xiaoqun LIU, Chiyu WANG, Jiabin FANG. Study on adaptability of scaling law to residence time distribution in bubbling fluidized beds with continuous operation [J]. CIESC Journal, 2024, 75(2): 543-552. |
[9] | Mingqing TAO, Minghao MU, Teng CHENG, Bo WANG. Research on spray coupled cooling to enhance the removal of fine particles by cyclone separator [J]. CIESC Journal, 2024, 75(2): 584-592. |
[10] | Shirong SONG, Hongchen LIU, Xiaotian MI, Chao XU, Mei YANG, Chaoqun YAO. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel [J]. CIESC Journal, 2024, 75(2): 566-574. |
[11] | Bidan ZHAO, Yiyang DAI, Junwu WANG, Yongmin ZHANG. CFD-DEM-IBM simulation on force characteristic on inclined-surface baffles in fluidized beds [J]. CIESC Journal, 2024, 75(1): 255-267. |
[12] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[13] | Yating LI, Zhongdong WANG, Yanpeng DONG, Chunying ZHU, Youguang MA, Taotao FU. Research progress of capillary flow in microchannels and its engineering application [J]. CIESC Journal, 2024, 75(1): 159-170. |
[14] | Yizhou CUI, Chengxiang LI, Linxiao ZHAI, Shuyu LIU, Xiaogang SHI, Jinsen GAO, Xingying LAN. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow [J]. CIESC Journal, 2024, 75(1): 197-210. |
[15] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||