CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 158-169.DOI: 10.11949/0438-1157.20240605
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Junhao HUANG1(), Keliang PANG2, Fangyuan SUN1(
), Fujun LIU3, Zhiyuan GU2, Long HAN4, Yanquan DUAN4, Yanhui FENG1(
)
Received:
2024-06-03
Revised:
2024-06-26
Online:
2024-12-17
Published:
2024-12-25
Contact:
Fangyuan SUN, Yanhui FENG
黄俊豪1(), 庞克亮2, 孙方远1(
), 刘福军3, 谷致远2, 韩龙4, 段衍泉4, 冯妍卉1(
)
通讯作者:
孙方远,冯妍卉
作者简介:
黄俊豪(1997—),男,硕士研究生,huangjh1220@163.com
基金资助:
CLC Number:
Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution[J]. CIESC Journal, 2024, 75(S1): 158-169.
黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169.
物质 | 密度/(kg·m-3) | 杨氏模量/Pa | 泊松比 | 恢复系数 | 静摩擦因数 | 滚动摩擦因数 |
---|---|---|---|---|---|---|
焦炭 | 980 | 2.2×107 | 0.22 | — | — | — |
炉壁 | 4500 | 5.0×109 | 0.30 | — | — | — |
焦炭-焦炭 | — | — | — | 0.20 | 0.56 | 0.15 |
焦炭-炉壁 | — | — | — | 0.20 | 0.41 | 0.09 |
Table 1 Physical parameters of coke and wall
物质 | 密度/(kg·m-3) | 杨氏模量/Pa | 泊松比 | 恢复系数 | 静摩擦因数 | 滚动摩擦因数 |
---|---|---|---|---|---|---|
焦炭 | 980 | 2.2×107 | 0.22 | — | — | — |
炉壁 | 4500 | 5.0×109 | 0.30 | — | — | — |
焦炭-焦炭 | — | — | — | 0.20 | 0.56 | 0.15 |
焦炭-炉壁 | — | — | — | 0.20 | 0.41 | 0.09 |
实际焦炭粒径 分布/mm | 模拟焦炭粒径 分布/mm | 质量分数/% | 数量分数/% |
---|---|---|---|
25 | 75 | 15.76 | 51.85 |
32.5 | 97.5 | 18.28 | 27.37 |
50 | 150 | 42.56 | 17.50 |
70 | 210 | 18.70 | 2.80 |
80 | 240 | 4.70 | 0.47 |
Table 2 Particle size distribution of coke by five-stage screening
实际焦炭粒径 分布/mm | 模拟焦炭粒径 分布/mm | 质量分数/% | 数量分数/% |
---|---|---|---|
25 | 75 | 15.76 | 51.85 |
32.5 | 97.5 | 18.28 | 27.37 |
50 | 150 | 42.56 | 17.50 |
70 | 210 | 18.70 | 2.80 |
80 | 240 | 4.70 | 0.47 |
区域编号 | 宽度范围/mm |
---|---|
1 | 0~1114 |
2 | 1114~2228 |
3 | 2228~3342 |
4 | 3342~4458 |
5 | 4458~5570 |
6 | 5570~6686 |
7 | 6686~7800 |
Table 3 Width range of each region
区域编号 | 宽度范围/mm |
---|---|
1 | 0~1114 |
2 | 1114~2228 |
3 | 2228~3342 |
4 | 3342~4458 |
5 | 4458~5570 |
6 | 5570~6686 |
7 | 6686~7800 |
1 | Wang H, Jin B S, Wang X J, et al. Formation and evolution mechanism for carbonaceous deposits on the surface of a coking chamber[J]. Processes, 2019, 7(8): 508. |
2 | Safarian S. To what extent could biochar replace coal and coke in steel industries?[J]. Fuel, 2023, 339: 127401. |
3 | 杨文彪. 加强干熄焦技术应用, 推动焦化行业绿色发展[J]. 山东冶金, 2012, 34(6): 1-3. |
Yang W B. Strengthen the application of CDQ technology to promote the green development of coking industry[J]. Shandong Metallurgy, 2012, 34(6): 1-3. | |
4 | 乔从华. 干熄焦技术的研究及展望[J]. 中国石油和化工标准与质量, 2013, 33(21): 57. |
Qiao C H. Research and prospect of CDQ technology[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(21): 57. | |
5 | 山田孝雄, 佐藤政明. 大型高炉の装入物分布と通気性[J]. Kawasaki Steel Giho, 1974, 6: 16-37. |
6 | Lingiardi O, Partemio C, Burrai O, et al. Burden distribution tests of Siderar`s No.2 blast furnace[J]. Ironmaking Conference Proceedings, 1997, 56: 517-524. |
7 | Sunahara K, Kamijo C, Inada T. Investigation on mechanism of size and density segregations of burden particles in the blast furnace[J]. Ironmaking Conference Proceedings, 1999, 58: 3-12. |
8 | Yuta K, Nishihara, N, Kimura M, et al. Application of techniques for packed bed analysis to studies on the construction of large coke dry quenching plants[J]. Nippon Steel Technical Report, 1982, 20: 95-104. |
9 | Katalka S, Otsuka J, Yasukouchi N, et al. Establishment of coke dry quenching with a coke throughput of 200t/h[C]//Proceedings of the 6th International Iron and Steel Congress. Japan, 1990: 337-344. |
10 | 飯田洋行, 宮田英癒, 斎藤英之. 工キスパートシステムを適用したコークス乾式消火設備自動運転制御システムの開発[J]. 鉄と鋼, 1992, 78: 1-4. |
11 | 刘志成, 冯妍卉, 张欣欣, 等. 干熄炉预存段内料面堆积形状的研究[J]. 燃料与化工, 2006, 37(3): 14-16. |
Liu Z C, Feng Y H, Zhang X X, et al. Study on coke bulk shape in CDQ pre-chamber[J]. Fuel & Chemical Processes, 2006, 37(3): 14-16. | |
12 | Liu Z C, Feng Y H, Zhang X X, et al. Numerical and experimental study on coke size distribution in bell-type charging in the CDQ shaft[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15(3): 236-240. |
13 | 刘华飞, 张欣欣. 干熄炉内传热和流体流动的数学模型[J]. 热科学与技术, 2002, 1(2): 113-117. |
Liu H F, Zhang X X. Mathematical model for fluid flow and heat transfer in the cooling shaft of coke dry quenching unit[J]. Journal of Thermal Science and Technology, 2002, 1(2): 113-117. | |
14 | 王猛, 朱卫兵, 孙巧群, 等. 提升管内气固流动特性的离散元模拟[J]. 化工学报, 2013, 64(7): 2436-2445. |
Wang M, Zhu W B, Sun Q Q, et al. Discrete element simulation of gas-solids flow behavior in riser[J]. CIESC Journal, 2013, 64(7): 2436-2445. | |
15 | 吴迎亚, 蓝兴英, 高金森. 基于DEM模拟的气固鼓泡床内流场间歇性及颗粒相干结构的分析[J]. 化工学报, 2014, 65(7): 2724-2732. |
Wu Y Y, Lan X Y, Gao J S. Analysis of flow field intermittency and coherent structure of particles based on DEM simulation of gas-solids bubbling bed[J]. CIESC Journal, 2014, 65(7): 2724-2732. | |
16 | 金默, 刘道银, 陈晓平. 基于离散元方法的高碱煤灰沉积过程数值模拟研究[J]. 化工学报, 2021, 72(4): 1939-1946. |
Jin M, Liu D Y, Chen X P. Numerical simulation research of high-alkali coal ash deposition process based on discrete element method[J]. CIESC Journal, 2021, 72(4): 1939-1946. | |
17 | 范正赟, 杨庆斌, 朱长军, 等. 料钟分布器对干熄焦炉内焦炭粒度偏析的作用[J]. 钢铁, 2021, 56(4): 98-102, 110. |
Fan Z Y, Yang Q B, Zhu C J, et al. Effect of distributor of bell-type on coke segregation in CDQ[J]. Iron & Steel, 2021, 56(4): 98-102, 110. | |
18 | 范正赟, 杨庆斌, 朱长军, 等. 装焦参数对干熄炉内焦炭分布的影响[J]. 中国冶金, 2020, 30(1): 10-17. |
Fan Z Y, Yang Q B, Zhu C J, et al. Influence of charge parameters on coke distribution in coke dry quenching furnace[J]. China Metallurgy, 2020, 30(1): 10-17. | |
19 | Yu Y W, Westerlund A, Paananen T, et al. Inter-particle percolation segregation during burden descent in the blast furnace[J]. ISIJ International, 2011, 51(7): 1050-1056. |
20 | Yu Y W, Saxén H. Effect of DEM parameters on the simulated inter-particle percolation of pellets into coke during burden descent in the blast furnace[J]. ISIJ International, 2012, 52(5): 788-796. |
21 | Ishihara S, Soda R, Zhang Q W, et al. DEM simulation of collapse phenomena of packed bed of raw materials for iron ore sinter during charging[J]. ISIJ International, 2013, 53(9): 1555-1560. |
22 | Xu W X, Cheng S S, Niu Q, et al. Effect of the main feeding belt position on burden distribution during the charging process of bell-less top blast furnace with two parallel hoppers[J]. ISIJ International, 2017, 57(7): 1173-1180. |
23 | Yu Y W, Saxén H. Analysis of rapid flow of particles down and from an inclined chute using small scale experiments and discrete element simulation[J]. Ironmaking & Steelmaking, 2011, 38(6): 432-441. |
24 | Yang W J, Zhou Z Y, Yu A B. Discrete particle simulation of solid flow in a three-dimensional blast furnace sector model[J]. Chemical Engineering Journal, 2015, 278: 339-352. |
25 | Mitra T, Saxén H. Investigation of coke collapse in the blast furnace using mathematical modeling and small scale experiments[J]. ISIJ International, 2016, 56(9): 1570-1579. |
26 | Wu S L, Kou M Y, Xu J, et al. DEM simulation of particle size segregation behavior during charging into and discharging from a Paul-Wurth type hopper[J]. Chemical Engineering Science, 2013, 99: 314-323. |
27 | 赵国磊. 无钟高炉装料过程炉料运动分布规律及颗粒偏析行为研究[D]. 北京: 北京科技大学, 2017. |
Zhao G L. Investigations on burden flow and distribution laws and particle segregation behaviors during charging process within bell-less blast furnace[D]. Beijing: University of Science and Technology Beijing, 2017. | |
28 | 陈建生. 无钟高炉布料数值模拟研究[D]. 北京: 北京科技大学, 2022. |
Chen J S. Numerical simulation of charging of blast furnace with bell-less top[D]. Beijing: University of Science and Technology Beijing, 2022. | |
29 | Yu Y W, Saxén H. Particle flow and behavior at bell-less charging of the blast furnace[J]. Steel Research International, 2013, 84(10): 1018-1033. |
30 | Yu Y, Zhang J, Saxén H. LIGGGHTS and EDEM application for charging system of ironmaking blast furnace[C]//Proceedings of the 2017 National Academic Annual Conference on Blast Furnace Ironmaking, China: The Iron-Smelting Division of the Chinese Society for Metals. 2017: 187-200. |
[1] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[2] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[3] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[4] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[5] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[6] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[7] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[8] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[9] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[10] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[11] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
[12] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[13] | Aiming DENG, Yurong HE, Tianqi TANG, Yanwei HU. Simulation of effect of draft plate on particle growth process in spray fluidized beds [J]. CIESC Journal, 2024, 75(8): 2787-2799. |
[14] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[15] | Zhimin HAN, Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel [J]. CIESC Journal, 2024, 75(7): 2486-2496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||