CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1816-1829.DOI: 10.11949/0438-1157.20231244
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yuhui SHI1,2(), Jiyuan XING1,2, Xuehan JIANG1,3, Shuang YE1,2,3(
), Weiguang HUANG1,2,3
Received:
2023-12-01
Revised:
2024-02-02
Online:
2024-06-25
Published:
2024-05-25
Contact:
Shuang YE
师毓辉1,2(), 邢继远1,2, 姜雪晗1,3, 叶爽1,2,3(
), 黄伟光1,2,3
通讯作者:
叶爽
作者简介:
师毓辉(1999—),男,硕士研究生,shiyh@sari.ac.cn
基金资助:
CLC Number:
Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM[J]. CIESC Journal, 2024, 75(5): 1816-1829.
师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829.
设计流量 Qdesign/(m3/h) | 设计扬程 H/m | 额定转速 n/(r/min) | 叶轮进口直径 D1/mm | 叶轮出口直径 D2/mm | 叶片出口宽度 b2/mm | 泵出口直径 D2/mm | 叶片数 Z |
---|---|---|---|---|---|---|---|
15 | 17 | 3000 | 50 | 115 | 9.2 | 40 | 7 |
Table 1 Main structural parameters of geometry of centrifugal pump
设计流量 Qdesign/(m3/h) | 设计扬程 H/m | 额定转速 n/(r/min) | 叶轮进口直径 D1/mm | 叶轮出口直径 D2/mm | 叶片出口宽度 b2/mm | 泵出口直径 D2/mm | 叶片数 Z |
---|---|---|---|---|---|---|---|
15 | 17 | 3000 | 50 | 115 | 9.2 | 40 | 7 |
气泡离散组 | 直径/mm |
---|---|
bin0 | 10.00 |
bin1 | 5.99 |
bin2 | 3.59 |
bin3 | 2.15 |
bin4 | 1.29 |
bin5 | 0.77 |
bin6 | 0.46 |
bin7 | 0.28 |
bin8 | 0.17 |
bin9 | 0.10 |
Table 2 Discrete bubble sizes in PBM
气泡离散组 | 直径/mm |
---|---|
bin0 | 10.00 |
bin1 | 5.99 |
bin2 | 3.59 |
bin3 | 2.15 |
bin4 | 1.29 |
bin5 | 0.77 |
bin6 | 0.46 |
bin7 | 0.28 |
bin8 | 0.17 |
bin9 | 0.10 |
研究变量 | 设置条件 |
---|---|
入口含气率 | 转速:1500 r/min |
入口含气率:0.32%、1.04%、2.21%、3.25%、4.86% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign | |
转速 | 转速:1200 r/min、1500 r/min、1800 r/min |
入口含气率:0.32% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign |
Table 3 Numerical simulation scheme
研究变量 | 设置条件 |
---|---|
入口含气率 | 转速:1500 r/min |
入口含气率:0.32%、1.04%、2.21%、3.25%、4.86% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign | |
转速 | 转速:1200 r/min、1500 r/min、1800 r/min |
入口含气率:0.32% | |
入口气泡直径:bin4 | |
运行流量:42%Qdesign |
1 | Temesgen T, Bui T T, Han M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40-51. |
2 | Dupre V, Ponasse M, Aurelle Y, et al. Bubble formation by water release in nozzles(Ⅰ): Mechanisms[J]. Water Research, 1998, 32(8): 2491-2497. |
3 | Zhao D Z, Ding T Y, Li X S, et al. Ozone catalytic oxidation of HCHO in air over MnO x at room temperature[J]. Chinese Journal of Catalysis, 2012, 33(2/3): 396-401. |
4 | Xu Q Y, Nakajima M, Ichikawa S, et al. A comparative study of microbubble generation by mechanical agitation and sonication[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4): 489-494. |
5 | 李兆军, 杜浩. 我国微细气泡技术发展综述[J]. 过程工程学报, 2017, 17(4): 655-663. |
Li Z J, Du H. Review of the development of fine bubble technology in China[J]. Chinese Journal of Process Engineering, 2017, 17(4): 655-663. | |
6 | Ahmed N, Jameson G J. The effect of bubble size on the rate of flotation of fine particles[J]. International Journal of Mineral Processing, 1985, 14(3): 195-215. |
7 | 高颂, 徐燕燕, 李继香, 等. 基于TFM-PBM耦合模型的离心泵内微气泡破碎合并的模拟研究[J]. 化工学报, 2021, 72(10): 5082-5093. |
Gao S, Xu Y Y, Li J X, et al. Simulation study of microbubbles break-up and coalescence in centrifugal pump based on TFM-PBM coupling model[J]. CIESC Journal, 2021, 72(10): 5082-5093. | |
8 | Murakami M, Minemura K. Effects of entrained air on the performance of centrifugal pumps: 2nd report, effects of number of blades[J]. Bulletin of JSME, 1974, 17(112): 1286-1295. |
9 | Murakami M, Minemura K. Effects of entrained air on the performance of a centrifugal pump: 1st report, performance and flow conditions[J]. Bulletin of JSME, 1974, 17(110): 1047-1055. |
10 | Barrios L, Prado M G. Experimental visualization of two-phase flow inside an electrical submersible pump stage[J]. Journal of Energy Resources Technology, 2011, 133(4): 1. |
11 | Monte Verde W, Biazussi J L, Sassim N A, et al. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers[J]. Experimental Thermal and Fluid Science, 2017, 85: 37-51. |
12 | Shao C L, Li C Q, Zhou J F. Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures[J]. International Journal of Heat and Fluid Flow, 2018, 71: 460-469. |
13 | Ito K, Xiong R D, Ito D, et al. X-ray radiography and numerical simulation of bubble behavior in centrifugal pump[J]. Japanese Journal of Multiphase Flow, 2021, 35(1): 101-108. |
14 | Ofuchi E M, Silva H L V, Bertoldi D, et al. Study of the bubble motion in a centrifugal rotor based on visualization in a rotating frame of reference[J]. Chemical Engineering Science, 2022, 259: 117829. |
15 | Hundshagen M, Rave K, Nguyen B D, et al. Two-phase flow simulations of liquid/gas transport in radial centrifugal pumps with special emphasis on the transition from bubbles to adherent gas accumulations[J]. Journal of Fluids Engineering, 2022, 144(10): 101202. |
16 | Si Q R, Bois G, Liao M Q, et al. A comparative study on centrifugal pump designs and two-phase flow characteristic under inlet gas entrainment conditions[J]. Energies, 2019, 13(1): 65. |
17 | Stel H, Ofuchi E M, Chiva S, et al. Numerical simulation of gas-liquid flows in a centrifugal rotor[J]. Chemical Engineering Science, 2020, 221: 115692. |
18 | Chen Y M, Patil A, Chen Y, et al. Numerical study on the first stage head degradation in an electrical submersible pump with population balance model[J]. Journal of Energy Resources Technology, 2019, 141(2): 022003. |
19 | Zhu J J, Zhu H W, Zhang J C, et al. A numerical study on flow patterns inside an electrical submersible pump (ESP) and comparison with visualization experiments[J]. Journal of Petroleum Science and Engineering, 2019, 173: 339-350. |
20 | Ge Z G, He D H, Huang R, et al. Application of CFD-PBM coupling model for analysis of gas-liquid distribution characteristics in centrifugal pump[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107518. |
21 | He D H, Ge Z G, Bai B F, et al. Gas-liquid two-phase performance of centrifugal pump under bubble inflow based on computational fluid dynamics-population balance model coupling model[J]. Journal of Fluids Engineering, 2020, 142(8): 081402. |
22 | Zhang F, Zhu L F, Chen K, et al. Numerical simulation of gas-liquid two-phase flow characteristics of centrifugal pump based on the CFD–PBM[J]. Mathematics, 2020, 8(5): 769. |
23 | Stel H, Ofuchi E M, Chiva S, et al. Numerical assessment of performance characteristics and two-phase flow dynamics of a centrifugal rotor operating under gas entrainment condition[J]. Experimental and Computational Multiphase Flow, 2022, 4(3): 221-240. |
24 | Tao S J, Shi G T, Xiao Y X, et al. Effect of operating parameters on the coalescence and breakup of bubbles in a multiphase pump based on a CFD-PBM coupled model[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1693. |
25 | 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223. |
Qin C P, Yang N. Population balance modeling of breakage and coalescence of dispersed bubbles or droplets in multiphase systems[J]. Progress in Chemistry, 2016, 28(8): 1207-1223. | |
26 | Valentas K J, Amundson N R. Breakage and coalescence in dispersed phase systems[J]. Industrial & Engineering Chemistry Fundamentals, 1966, 5(4): 533-542. |
27 | Kuboi R, Komasawa I, Otake T. Collision and coalescence of dispersed drops in turbulent liquid flow[J]. Journal of Chemical Engineering of Japan, 1972, 5(4): 423-424. |
28 | Ross S L. Measurements and Models of the Dispersed Phase Mixing Process [D]. Ann Arbor: University of Michigan, 1971. |
29 | Coulaloglou C A, Tavlarides L L. Description of interaction processes in agitated liquid-liquid dispersions[J]. Chemical Engineering Science, 1977, 32(11): 1289-1297. |
30 | Lee C H, Erickson L E, Glasgow L A. Bubble breakup and coalescence in turbulent gas-liquid dispersions[J]. Chemical Engineering Communications, 1987, 59(1/2/3/4/5/6): 65-84. |
31 | Prince M J, Blanch H W. Bubble coalescence and break-up in air-sparged bubble columns[J]. AIChE Journal, 1990, 36(10): 1485-1499. |
32 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
33 | Zhang J Y, Cai S J, Li Y J, et al. Visualization study of gas-liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump[J]. Experimental Thermal and Fluid Science, 2016, 70: 125-138. |
34 | Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
35 | 邢雷, 高金明, 蒋明虎, 等. 聚结破碎模型在水力旋流器模拟中的应用与对比[J]. 化学工程, 2021, 49(6): 46-51. |
Xing L, Gao J M, Jiang M H, et al. Application and comparison of coalescence and breakage model in simulation of hydrocyclone[J]. Chemical Engineering (China), 2021, 49(6): 46-51. | |
36 | 王福军. 流体机械旋转湍流计算模型研究进展[J]. 农业机械学报, 2016, 47(2): 1-14. |
Wang F J. Research progress of computational model for rotating turbulent flow in fluid machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 1-14. | |
37 | Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow[M]. New York, NY: Springer New York, 2011. |
38 | Minemura K, Murakami M. A theoretical study on air bubble motion in a centrifugal pump impeller[J]. Journal of Fluids Engineering, 1980, 102(4): 446-453. |
39 | Maxey M R, Riley J J. Equation of motion for a small rigid sphere in a nonuniform flow[J]. Physics of Fluids, 1983, 26(4): 883-889. |
40 | Legendre D, Magnaudet J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368(1): 81-126. |
41 | 张振铎. 泡状入流条件下离心泵叶轮内气液两相流动特性及对泵性能影响实验研究[D]. 西安: 西安理工大学, 2019. |
Zhang Z D. Experimental study on gas-liquid flow characteristics and pump performance of centrifugal pump impeller under bubble inflow[D]. Xi’an: Xi’an University of Technology, 2019. | |
42 | 戈振国. 基于CFD-PBM耦合模型的离心泵气液两相流动特性研究[D]. 西安: 西安理工大学, 2019. |
Ge Z G. Investigation on gas-liquid two-phase flow characteristics of centrifugal pump based on CFD-PBM coupling model[D]. Xi’an: Xi’an University of Technology, 2019. | |
43 | 梁晓飞, 姚亚, 罗正鸿. 流化催化裂化提升管反应器的CFD-PBM耦合模型: 矩方法适用性比较[J]. 化工学报, 2016, 67(8): 3224-3233. |
Liang X F, Yao Y, Luo Z H. Comparison of suitability of MOMs in solving CFD-PBM coupling model for FCC riser reactors[J]. CIESC Journal, 2016, 67(8): 3224-3233. | |
44 | 赵斌娟, 谢昀彤, 廖文言, 等. 第二代涡识别方法在混流泵内部流场中的适用性分析[J]. 机械工程学报, 2020, 56(14): 216-223. |
Zhao B J, Xie Y T, Liao W Y, et al. Adaptability analysis of second generation vortex recognition method in internal flow field of mixed-flow pumps[J]. Journal of Mechanical Engineering, 2020, 56(14): 216-223. | |
45 | He D H, Wang G, Liu Z, et al. Bubble breakage and aggregation characteristics in a vortex pump under bubble inflow[J]. Physics of Fluids, 2023, 35(9): 093301. |
[1] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[2] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[3] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[4] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[5] | Wenkai CHENG, Jinyu YAN, Jiajun WANG, Lianfang FENG. Research progress of horizontal kneading reactor and its application in polymerization industry [J]. CIESC Journal, 2024, 75(3): 768-781. |
[6] | Shiliang GU, Boren TAN, Quanzhong CHENG, Weijie YAO, Zhipeng DONG, Feng XU, Yong WANG. Numerical simulation of hydraulic characteristics in axial flow pump type mixer [J]. CIESC Journal, 2024, 75(3): 815-822. |
[7] | Nailiang LI, Changsong LIU, Xueping DU, Yifan ZHANG, Dongtai HAN. Analysis of multi-scale fractal characteristics of severe slugging based on Hurst exponent [J]. CIESC Journal, 2024, 75(2): 484-492. |
[8] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[9] | Xiaobin ZHAN, Huibin WANG, Yalong JIANG, Tielin SHI. Research on power consumption characteristics of high viscosity fluid mixing in acoustic resonance mixer [J]. CIESC Journal, 2024, 75(2): 531-542. |
[10] | Qichao LIU, Shibo ZHANG, Yunlong ZHOU, Yuqing LI, Cong CHEN, Yiwen RAN. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration [J]. CIESC Journal, 2024, 75(2): 493-504. |
[11] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[12] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[13] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[14] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 612
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 196
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||