CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 374-384.DOI: 10.11949/0438-1157.20240690

• Energy and environmental engineering • Previous Articles     Next Articles

Analysis of influence of operating temperature on water distribution, proton transport and performance of PEMFC

Qiwo HAN1(), Yongfeng LIU1(), Pucheng PEI2, Lu ZHANG1, Shengzhuo YAO1   

  1. 1.Beijing Engineering Research Center of Monitoring for Construction Safety, School of Electromechanical and Vehicle Engineering,Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    2.State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China
  • Received:2024-06-20 Revised:2024-09-28 Online:2025-02-08 Published:2025-01-25
  • Contact: Yongfeng LIU

工作温度对PEMFC水分布、质子传输及性能影响分析

韩启沃1(), 刘永峰1(), 裴普成2, 张璐1, 姚圣卓1   

  1. 1.北京建筑大学机电与车辆工程学院,北京市建筑安全监测工程技术研究中心,北京 100044
    2.清华大学智能绿色车辆与交通全国重点实验室,北京 100084
  • 通讯作者: 刘永峰
  • 作者简介:韩启沃(2000—),男,硕士研究生,1545833068@qq.com
  • 基金资助:
    国家自然科学基金项目(52376091);先进内燃动力全国重点实验室开放研究项目(K2023-04);北京建筑大学培育项目专项资金项目(X24030)

Abstract:

The operating temperature directly affects the water content and power density of the membrane, and determines the proton transport efficiency of the membrane. In order to study the effect of operating temperature on proton transport efficiency and performance of proton exchange membrane fuel cell (PEMFC), a membrane proton transport (MPT) model was proposed. The model takes into account the influence of the operating temperature on the film water content, deduces the output voltage calculation formula, and couples the MPT model into COMSOL for multi-physical field calculation. A fuel cell test system was built, and experiments and numerical simulations were carried out at inlet relative humidity of 100% and operating temperature of 50℃, 60℃ and 70℃. The output voltage was calculated based on MPT model, and the effects of operating temperature changes on transmembrane water flux, membrane water content and proton conductivity were analyzed. The results show that the maximum relative error between the MPT model and the experimental value is 8.41% when the operating temperature is 70℃. In the range of current density 0—800 mA/cm2, the relative error is 0.12%—2.52%. Under the same inlet pressure, inlet relative humidity and inlet flow, with the increase of operating temperature, the transmembrane water flux increases, the membrane water content decreases and the distribution becomes more uniform, the wetting degree of proton exchange membrane (PEM) is higher, and the proton conductivity increases.In the current density range of 0—650 mA/ cm2, the output voltage at 70℃ is lower than that at 50℃. On the contrary, it is higher than 50℃ and 60℃ in the current density range of 650—1300 mA/ cm2.With the increase of current density, the transmembrane water flux increases, the distribution of membrane water content becomes more uniform, and the proton conductivity increases under some conditions. When the operating temperature is 70℃, the power density of PEMFC is the highest, which is 399.73 mW/cm2.

Key words: fuel cell, proton exchange membrane, operating temperature, battery performance, numerical simulation, renewable energy

摘要:

工作温度直接影响质子交换膜燃料电池(PEMFC)的膜态水含量和功率密度,决定了膜的质子传输效率。为研究工作温度对PEMFC质子传输效率及性能的影响,提出了膜质子传输(membrane proton transport,MPT)模型。该模型考虑了工作温度变化对膜态水含量的影响,推导了输出电压计算公式,并将MPT模型耦合进COMSOL进行了多物理场计算。搭建了燃料电池测试系统,在进气相对湿度100%,工作温度为50、60和70℃下进行了实验和数值仿真,基于MPT模型计算了输出电压,分析了工作温度变化对跨膜水通量、膜态水含量和质子电导率的影响。结果表明:工作温度为70℃时,MPT模型与实验值的最大相对误差为8.41%;在电流密度0~800 mA/cm2范围内,相对误差为0.12%~2.52%。相同进气口压力、进气相对湿度和进气流量下,随着工作温度升高,跨膜水通量增加,膜态水含量降低且分布更均匀,PEM的湿润程度更高,质子电导率升高。在电流密度0~650 mA/cm2范围内70℃的输出电压低于50℃,在电流密度650~1300mA/cm2范围内高于50℃和60℃。随着电流密度升高,跨膜水通量增加,膜态水含量分布更均匀,部分工况下质子电导率升高。当工作温度为70℃时,PEMFC的功率密度最大,为399.73 mW/cm2

关键词: 燃料电池, 质子交换膜, 工作温度, 电池性能, 数值模拟, 再生能源

CLC Number: