CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1493-1503.DOI: 10.11949/0438-1157.20240828
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yichen ZHANG(), Wenbiao ZHANG(
), Haoyang LI, Xiaoyang NING
Received:
2024-07-22
Revised:
2024-10-06
Online:
2025-05-12
Published:
2025-04-25
Contact:
Wenbiao ZHANG
通讯作者:
张文彪
作者简介:
张翼辰(2000—),男,硕士研究生,yczhang_em@163.com
基金资助:
CLC Number:
Yichen ZHANG, Wenbiao ZHANG, Haoyang LI, Xiaoyang NING. Flow measurement of gas-liquid two-phase CO2 using Venturi tube based on dual differential pressure model[J]. CIESC Journal, 2025, 76(4): 1493-1503.
张翼辰, 张文彪, 李浩洋, 宁晓阳. 基于双差压模型的文丘里管气液两相CO2流量测量[J]. 化工学报, 2025, 76(4): 1493-1503.
模型 | 经验参数 | ||
---|---|---|---|
A | b | c | |
Collins模型 | 0.331 | 0.852 | 0.571 |
De Leeuw模型 | 0.123 | — | — |
张宏建模型 | 0.824 | 0.869 | 0.021 |
Steven模型 | ASte=2454.465(1/r)2-389.709(1/r)+17.873 | ||
BSte=61.479(1/r)2-8.810(1/r)+1.222 | |||
CSte=1722.977(1/r)2-272.71(1/r)+12.328 | |||
DSte=57.718(1/r)2-6.692(1/r)+1.571 |
Table 1 Parameters used in different flow measurement models
模型 | 经验参数 | ||
---|---|---|---|
A | b | c | |
Collins模型 | 0.331 | 0.852 | 0.571 |
De Leeuw模型 | 0.123 | — | — |
张宏建模型 | 0.824 | 0.869 | 0.021 |
Steven模型 | ASte=2454.465(1/r)2-389.709(1/r)+17.873 | ||
BSte=61.479(1/r)2-8.810(1/r)+1.222 | |||
CSte=1722.977(1/r)2-272.71(1/r)+12.328 | |||
DSte=57.718(1/r)2-6.692(1/r)+1.571 |
液相质量流量/ (kg/s) | 气相质量流量/ (kg/s) | 温度/℃ | 压力/MPa | K | 1/X | 气相质量流量的 相对误差/% | 液相质量流量的 相对误差/% | 总质量流量的相对误差/% |
---|---|---|---|---|---|---|---|---|
1.00 | 0.03~0.11 | 14.1~15.1 | 4.9~5.0 | 1.11~1.19 | 0.08~0.25 | -2.2~3.9 | -1.3~2.0 | -1.1~2.0 |
1.07 | 0.04~0.12 | 15.9~16.9 | 5.1~5.2 | 1.11~1.19 | 0.09~0.25 | -3.7~3.6 | -0.6~2.1 | -0.6~2.2 |
1.18 | 0.07~0.12 | 16.3~17.0 | 5.1~5.2 | 1.12~1.17 | 0.14~0.22 | -6.3~4.9 | -1.0~1.1 | -0.5~1.2 |
Table 2 Relative error of dual differential pressure model under different conditions
液相质量流量/ (kg/s) | 气相质量流量/ (kg/s) | 温度/℃ | 压力/MPa | K | 1/X | 气相质量流量的 相对误差/% | 液相质量流量的 相对误差/% | 总质量流量的相对误差/% |
---|---|---|---|---|---|---|---|---|
1.00 | 0.03~0.11 | 14.1~15.1 | 4.9~5.0 | 1.11~1.19 | 0.08~0.25 | -2.2~3.9 | -1.3~2.0 | -1.1~2.0 |
1.07 | 0.04~0.12 | 15.9~16.9 | 5.1~5.2 | 1.11~1.19 | 0.09~0.25 | -3.7~3.6 | -0.6~2.1 | -0.6~2.2 |
1.18 | 0.07~0.12 | 16.3~17.0 | 5.1~5.2 | 1.12~1.17 | 0.14~0.22 | -6.3~4.9 | -1.0~1.1 | -0.5~1.2 |
1 | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7. |
Xi J P. Speech at the general debate of the 75th session of the United Nations General Assembly[J]. Gazette of the State Council of the People's Republic of China, 2020(28): 5-7. | |
2 | 云慧敏, 代建军, 李辉, 等. 生物质耦合燃煤发电经济环境效益评估[J]. 化工学报, 2021, 72(12): 6311-6327. |
Yun H M, Dai J J, Li H, et al. Economic and environmental assessment of biomass coupled coal-fired power generation[J]. CIESC Journal, 2021, 72(12): 6311-6327. | |
3 | Dods M N, Kim E J, Long J R, et al. Deep CCS: moving beyond 90% carbon dioxide capture[J]. Environmental Science & Technology, 2021, 55(13): 8524-8534. |
4 | Mills C, Chinello G, Henry M. Flow measurement challenges for carbon capture, utilization and storage[J]. Flow Measurement and Instrumentation, 2022, 88: 102261. |
5 | Arellano Y, Tjugum S A, Pedersen O B, et al. Measurement technologies for pipeline transport of carbon dioxide-rich mixtures for CCS[J]. Flow Measurement and Instrumentation, 2024, 95: 102515. |
6 | Park J H, Cha J E. Measurements of the flow of supercritical pressure carbon dioxide through Venturi flow meter[J]. Flow Measurement and Instrumentation, 2023, 91: 102364. |
7 | Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48. |
8 | Murdock J W. Two-phase flow measurement with orifices[J]. Journal of Basic Engineering, 1962, 84(4): 419-432. |
9 | Bizon E. Two-phase flow measurement with sharp-edged orifices and Venturis[R]. Chalk River(Ontario): Atomic Energy of Canada Ltd., 1965. |
10 | James R. Metering of steam-water two-phase flow by sharp-edged orifices[J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(1): 549-572. |
11 | Chisholm D. Flow of incompressible two-phase mixtures through sharp-edged orifices[J]. Journal of Mechanical Engineering Science, 1967, 9(1): 72-78. |
12 | Collins D B, Gacesa M. Measurement of steam quality in two-phase upflow with Venturimeters and orifice plates[J]. Journal of Basic Engineering, 1971, 93(1): 11-20. |
13 | Lin Z H. Two-phase flow measurements with sharp-edged orifices[J]. International Journal of Multiphase Flow, 1982, 8(6): 683-693. |
14 | Liu X L, Lao L Y, Falcone G. A comprehensive assessment of correlations for two-phase flow through Venturi tubes[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103323. |
15 | De Leeuw R. Liquid correction of Venturi meter readings in wet gas flow[C]//Proceedings of the 1997 North Sea Flow Measurement Workshop. Kristiansand, 1997. |
16 | Steven R N. Wet gas metering with a horizontally mounted Venturi meter[J]. Flow Measurement and Instrumentation, 2002, 12(5/6): 361-372. |
17 | Zhang H J, Yue W T, Huang Z Y. Investigation of oil-air two-phase mass flow rate measurement using Venturi and void fraction sensor[J]. Journal of Zhejiang University: Science A, 2005, 6(6): 601-606. |
18 | 张宏建, 岳伟挺, 马龙博, 等. 文丘里管中气液两相流差压波动信号与空隙率关系[J]. 化工学报, 2005, 56(11): 2102-2107. |
Zhang H J, Yue W T, Ma L B, et al. Relationship between fluctuating differential pressure and void fraction of gas-liquid two-phase flow in Venturi tube[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(11): 2102-2107. | |
19 | Silva A M, Teixeira J C F, Teixeira S F C F. Experiments in a large-scale venturi scrubber (part Ⅰ): Pressure drop[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 59-67. |
20 | Yu P N, Xu Y, Zhang T, et al. A study on the modeling of static pressure distribution of wet gas in Venturi[J]. AIChE Journal, 2015, 61(2): 699-708. |
21 | Salehi S M, Lao L Y, Xing L C, et al. Devices and methods for wet gas flow metering: a comprehensive review[J]. Flow Measurement and Instrumentation, 2024, 96: 102518. |
22 | Xu L J, Zhou W L, Li X M. Wet gas flow modeling for a vertically mounted Venturi meter[J]. Measurement Science and Technology, 2012, 23(4): 045301. |
23 | Yuan C, Xu Y, Zhang T, et al. Dual-iterative model for gas condensate measurement based on void fraction[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 330-336. |
24 | 牛守梓, 吴海涛, 徐英, 等. 基于文丘里管的页岩气试采期段塞流测量补偿方法[J]. 化工学报, 2018, 69(8): 3364-3372. |
Niu S Z, Wu H T, Xu Y, et al. Compensation method for slug flow measurement in shale gas well using Venturi tube[J]. CIESC Journal, 2018, 69(8): 3364-3372. | |
25 | 张强, 徐英, 张涛. 长槽道内文丘里湿气流量测量虚高特性[J]. 化工学报, 2011, 62(3): 636-642. |
Zhang Q, Xu Y, Zhang T. Wet gas performance of long slot internal Venturi meter[J]. CIESC Journal, 2011, 62(3): 636-642. | |
26 | Yuan C, Xu Y, Zhang T, et al. Experimental investigation of wet gas over reading in Venturi[J]. Experimental Thermal and Fluid Science, 2015, 66: 63-71. |
27 | Aursand P, Hammer M, Munkejord S T, et al. Pipeline transport of CO2 mixtures: models for transient simulation[J]. International Journal of Greenhouse Gas Control, 2013, 15: 174-185. |
28 | Armand A A. The resistance during the movement of a two-phase system in horizontal pipes[J]. Izv Vses. Teplotekh. Inst., 1946, 828(1): 16-23. |
29 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 用安装在圆形截面管道中的差压装置测量满管流体流量 第4部分: 文丘里管: [S]. 北京: 中国标准出版社, 2007. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full(part 4): Venturi tubes: [S]. Beijing: Standards Press of China, 2007. | |
30 | 丁宁, 邵丁, 闫勇, 等. 基于门控循环单元的动态过程下两相CO2质量流量测量[J]. 仪器仪表学报, 2021, 42(10): 112-120. |
Ding N, Shao D, Yan Y. Mass flowrate measurement of two-phase CO2 in a transient process using a gated recurrent unit neural network model[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 112-120. |
[1] | Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen [J]. CIESC Journal, 2025, 76(4): 1731-1741. |
[2] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
[3] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
[4] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
[5] | Yao FU, Yingjuan SHAO, Wenqi ZHONG. Experimental study on cyclic heat storage performance of TiO2-doped calcium based materials under pressurized carbonation [J]. CIESC Journal, 2025, 76(3): 1180-1190. |
[6] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
[7] | Zheng GONG, Xiulu GAO, Ling ZHAO, Dongdong HU. Preparation and shape memory properties of PBAT/PLA foams by supercritical CO2 [J]. CIESC Journal, 2025, 76(2): 888-896. |
[8] | Yan LI, Hongli GUO, Guoqing SU, Jianwen ZHANG. Gas-liquid two-phase flow and erosion-corrosion in air cooler of hydrogenation unit [J]. CIESC Journal, 2025, 76(1): 141-150. |
[9] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[10] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[11] | Yanlin CHEN, Aiguo ZHOU, Jiale ZHENG, Chuanruo YANG, Tianshu GE. Effects of support materials on amine-impregnated DAC adsorbents [J]. CIESC Journal, 2024, 75(S1): 217-222. |
[12] | Bei PEI, Zhibin HAO, Tianxiang XU, Ziqi ZHONG, Rui LI, Chong JIA, Yulong DUAN. Effect of surfactants on fire extinguishing efficiency of salted double fluid fine water mist [J]. CIESC Journal, 2024, 75(9): 3369-3378. |
[13] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[14] | Liang ZHAO, Yuqiao LI, De ZHANG, Shengqiang SHEN. Experimental study of internal and external field characteristics of spiral nozzle [J]. CIESC Journal, 2024, 75(8): 2777-2786. |
[15] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 44
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||