CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3297-3309.DOI: 10.11949/0438-1157.20240123
• Energy and environmental engineering • Previous Articles Next Articles
Xinyue LU1,2(), Ruiying CHEN1, Xiaxue JIANG1, Hairui LIANG1, Ge GAO1, Zhengfang YE2(
)
Received:
2024-01-26
Revised:
2024-06-03
Online:
2024-10-10
Published:
2024-09-25
Contact:
Zhengfang YE
卢昕悦1,2(), 陈锐莹1, 姜夏雪1, 梁海瑞1, 高歌1, 叶正芳2(
)
通讯作者:
叶正芳
作者简介:
卢昕悦(1995—),女,博士,工程师,luxy21@cnooc.com.cn
基金资助:
CLC Number:
Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy[J]. CIESC Journal, 2024, 75(9): 3297-3309.
卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309.
参数 | 数值 |
---|---|
原料气质量流量/(t/h) | 123.5 |
环境温度/℃ | 20 |
环境压力/kPa | 103 |
接收站单条外输线LNG最大外输量/(t/h) | 175 |
接收站LNG高压外输压力/MPa | 10 |
压缩机等熵效率 | 0.85 |
泵等熵效率 | 0.85 |
膨胀机等熵效率 | 0.85 |
换热器最小温差/℃ | 3 |
蓄冷效率/% | 80 |
Table 1 Process design parameters
参数 | 数值 |
---|---|
原料气质量流量/(t/h) | 123.5 |
环境温度/℃ | 20 |
环境压力/kPa | 103 |
接收站单条外输线LNG最大外输量/(t/h) | 175 |
接收站LNG高压外输压力/MPa | 10 |
压缩机等熵效率 | 0.85 |
泵等熵效率 | 0.85 |
膨胀机等熵效率 | 0.85 |
换热器最小温差/℃ | 3 |
蓄冷效率/% | 80 |
组成 | 含量/%(mol) |
---|---|
氮气 | 0.02 |
甲烷 | 86.20 |
乙烷 | 8.47 |
丙烷 | 3.94 |
异丁烷 | 0.70 |
正丁烷 | 0.65 |
异戊烷 | 0.02 |
正戊烷 | 0 |
总计 | 100.00 |
Table 2 LNG composition
组成 | 含量/%(mol) |
---|---|
氮气 | 0.02 |
甲烷 | 86.20 |
乙烷 | 8.47 |
丙烷 | 3.94 |
异丁烷 | 0.70 |
正丁烷 | 0.65 |
异戊烷 | 0.02 |
正戊烷 | 0 |
总计 | 100.00 |
设备 | 成本计算模型 | 特性参数 | |
---|---|---|---|
压缩机 | X1为功率,kW | ||
膨胀机 | X2为功率,kW | ||
泵 | X3为功率,kW | ||
换热器 | X4为换热面积,m2 | ||
压力储罐 | X5为储罐体积,m3 | ||
普通储罐 | X6为储罐体积,m3 |
Table 3 Cost estimating equation of major components
设备 | 成本计算模型 | 特性参数 | |
---|---|---|---|
压缩机 | X1为功率,kW | ||
膨胀机 | X2为功率,kW | ||
泵 | X3为功率,kW | ||
换热器 | X4为换热面积,m2 | ||
压力储罐 | X5为储罐体积,m3 | ||
普通储罐 | X6为储罐体积,m3 |
状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) | 状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) |
---|---|---|---|---|---|---|---|
a1 | 25.0 | 101 | 123.50 | a14 | -74.8 | 13980 | 104.90 |
a2 | 206.3 | 445 | 123.50 | a15 | 196.0 | 13960 | 104.90 |
a3 | 46.0 | 424 | 123.50 | a16 | 53.3 | 3005 | 104.90 |
a4 | 239.1 | 1867 | 123.50 | a17 | 196.0 | 2987 | 104.90 |
a5 | 46.0 | 1847 | 123.50 | a18 | 4.7 | 300 | 104.90 |
a6 | 240.1 | 8128 | 123.50 | a19 | 146.0 | 281 | 104.90 |
a7 | 46.0 | 8108 | 123.50 | a20 | 56.6 | 101 | 104.90 |
a8 | -23.2 | 8088 | 123.50 | a21 | -140.0 | 9970 | 13.870 |
a9 | -142.0 | 8068 | 123.50 | a22 | 0.3 | 9950 | 13.870 |
a10 | -154.6 | 2000 | 123.50 | a23 | -130.0 | 215 | 62.750 |
a11 | -154.6 | 2000 | 104.90 | a24 | 5.9 | 235 | 62.750 |
a12 | -154.6 | 2000 | 104.90 | a25 | -147.0 | 100 | 280.10 |
a13 | -139.9 | 14000 | 104.90 | a26 | -70.0 | 400 | 224.10 |
Table 4 Operating parameters of LNG-LAES process
状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) | 状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) |
---|---|---|---|---|---|---|---|
a1 | 25.0 | 101 | 123.50 | a14 | -74.8 | 13980 | 104.90 |
a2 | 206.3 | 445 | 123.50 | a15 | 196.0 | 13960 | 104.90 |
a3 | 46.0 | 424 | 123.50 | a16 | 53.3 | 3005 | 104.90 |
a4 | 239.1 | 1867 | 123.50 | a17 | 196.0 | 2987 | 104.90 |
a5 | 46.0 | 1847 | 123.50 | a18 | 4.7 | 300 | 104.90 |
a6 | 240.1 | 8128 | 123.50 | a19 | 146.0 | 281 | 104.90 |
a7 | 46.0 | 8108 | 123.50 | a20 | 56.6 | 101 | 104.90 |
a8 | -23.2 | 8088 | 123.50 | a21 | -140.0 | 9970 | 13.870 |
a9 | -142.0 | 8068 | 123.50 | a22 | 0.3 | 9950 | 13.870 |
a10 | -154.6 | 2000 | 123.50 | a23 | -130.0 | 215 | 62.750 |
a11 | -154.6 | 2000 | 104.90 | a24 | 5.9 | 235 | 62.750 |
a12 | -154.6 | 2000 | 104.90 | a25 | -147.0 | 100 | 280.10 |
a13 | -139.9 | 14000 | 104.90 | a26 | -70.0 | 400 | 224.10 |
状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) | 状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) |
---|---|---|---|---|---|---|---|
b1 | 58.0 | 1500 | 123.50 | b14 | 128.0 | 14980 | 123.50 |
b2 | 138.4 | 3600 | 123.50 | b15 | 60.4 | 6612 | 123.50 |
b3 | 56.0 | 3580 | 123.50 | b16 | 128.0 | 6593 | 123.50 |
b4 | 139.3 | 8592 | 123.50 | b17 | -23.5 | 630 | 123.50 |
b5 | 55.0 | 8572 | 123.50 | b18 | -50.0 | 610 | 123.50 |
b6 | 128.7 | 20570 | 123.50 | b19 | -50.0 | 610 | 123.50 |
b7 | 56.0 | 20550 | 123.50 | b20 | -49.6 | 1510 | 123.50 |
b8 | 20.0 | 20530 | 123.50 | b21 | 58.0 | 1500 | 123.50 |
b9 | 20.0 | 20530 | 123.50 | b22 | -140.0 | 9975 | 106.80 |
b10 | 20.0 | 20530 | 123.50 | b23 | -48.4 | 9955 | 106.80 |
b11 | 22.4 | 23000 | 123.50 | b24 | -30.0 | 500 | 97.27 |
b12 | 128.0 | 22980 | 123.50 | b25 | 10.0 | 480 | 97.27 |
b13 | 96.2 | 15000 | 123.50 |
Table 5 Operating parameters of LNG-LCES process
状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) | 状态点 | 温度/℃ | 压力/kPa | 质量流量/(t/h) |
---|---|---|---|---|---|---|---|
b1 | 58.0 | 1500 | 123.50 | b14 | 128.0 | 14980 | 123.50 |
b2 | 138.4 | 3600 | 123.50 | b15 | 60.4 | 6612 | 123.50 |
b3 | 56.0 | 3580 | 123.50 | b16 | 128.0 | 6593 | 123.50 |
b4 | 139.3 | 8592 | 123.50 | b17 | -23.5 | 630 | 123.50 |
b5 | 55.0 | 8572 | 123.50 | b18 | -50.0 | 610 | 123.50 |
b6 | 128.7 | 20570 | 123.50 | b19 | -50.0 | 610 | 123.50 |
b7 | 56.0 | 20550 | 123.50 | b20 | -49.6 | 1510 | 123.50 |
b8 | 20.0 | 20530 | 123.50 | b21 | 58.0 | 1500 | 123.50 |
b9 | 20.0 | 20530 | 123.50 | b22 | -140.0 | 9975 | 106.80 |
b10 | 20.0 | 20530 | 123.50 | b23 | -48.4 | 9955 | 106.80 |
b11 | 22.4 | 23000 | 123.50 | b24 | -30.0 | 500 | 97.27 |
b12 | 128.0 | 22980 | 123.50 | b25 | 10.0 | 480 | 97.27 |
b13 | 96.2 | 15000 | 123.50 |
设备 | 㶲损失/kW | |
---|---|---|
LNG-LAES系统 | LNG-LCES系统 | |
合计 | 12756.02 | 4951.44 |
压缩机 | 1880.44 | 649.40 |
膨胀机 | 2535.02 | 1023.88 |
泵 | 277.27 | 8.02 |
冷却器 | 777.32 | 250.11 |
加热器 | 4382.12 | 423.14 |
LNG换热器 | 1388.44 | 2075.19 |
蓄能换热器 | 1515.41 | 521.69 |
Table 6 Exergy loss for main equipment
设备 | 㶲损失/kW | |
---|---|---|
LNG-LAES系统 | LNG-LCES系统 | |
合计 | 12756.02 | 4951.44 |
压缩机 | 1880.44 | 649.40 |
膨胀机 | 2535.02 | 1023.88 |
泵 | 277.27 | 8.02 |
冷却器 | 777.32 | 250.11 |
加热器 | 4382.12 | 423.14 |
LNG换热器 | 1388.44 | 2075.19 |
蓄能换热器 | 1515.41 | 521.69 |
参数 | LNG-LAES系统 | LNG-LCES系统 |
---|---|---|
最佳储能压力/MPa | 2.0 | 20 |
最大释能压力/MPa | 14 | 25 |
可接受LNG温区/℃ | -160~-130 | -160~-110 |
可接受LNG压力/MPa | 1~10 | 1~10 |
系统最大㶲效率/% | 57.53 | 43.42 |
系统最大循环效率/% | 63.01 | 80.53 |
最大LNG冷能利用率/% | 52.72 | 59.33 |
最大膨胀发电量/MW | 13.08 | 5.44 |
储能密度/(kW·h/m3) | 79.61 | 41.16 |
Table 7 Comparison of main performance parameters of proposed two systems
参数 | LNG-LAES系统 | LNG-LCES系统 |
---|---|---|
最佳储能压力/MPa | 2.0 | 20 |
最大释能压力/MPa | 14 | 25 |
可接受LNG温区/℃ | -160~-130 | -160~-110 |
可接受LNG压力/MPa | 1~10 | 1~10 |
系统最大㶲效率/% | 57.53 | 43.42 |
系统最大循环效率/% | 63.01 | 80.53 |
最大LNG冷能利用率/% | 52.72 | 59.33 |
最大膨胀发电量/MW | 13.08 | 5.44 |
储能密度/(kW·h/m3) | 79.61 | 41.16 |
储能系统 | 循环效率/% | 平均能源成本/(CNY/(kW·h)) | 文献 |
---|---|---|---|
LCES | 56.64 | — | [ |
55.23 | — | [ | |
58.79 | 1.13 | [ | |
68.79 | 0.77 | [ | |
LNG-LCES | 81.09 | 0.72 | [ |
LNG-LCES(本研究) | 80.53 | 0.82 | — |
LAES | 55 | — | [ |
50 | — | [ | |
56.48 | 0.85 | [ | |
54~56 | 0.92 | [ | |
LNG-LAES | 68.12 | — | [ |
68.64 | — | [ | |
LNG-LAES-ORC | 70.31 | — | [ |
LNG-LAES-Brayton | 70.6 | — | [ |
LNG-LAES(本研究) | 63.01 | 0.98 | - |
Table 8 Comparison of diffferent research on liquid gas energy storage systems
储能系统 | 循环效率/% | 平均能源成本/(CNY/(kW·h)) | 文献 |
---|---|---|---|
LCES | 56.64 | — | [ |
55.23 | — | [ | |
58.79 | 1.13 | [ | |
68.79 | 0.77 | [ | |
LNG-LCES | 81.09 | 0.72 | [ |
LNG-LCES(本研究) | 80.53 | 0.82 | — |
LAES | 55 | — | [ |
50 | — | [ | |
56.48 | 0.85 | [ | |
54~56 | 0.92 | [ | |
LNG-LAES | 68.12 | — | [ |
68.64 | — | [ | |
LNG-LAES-ORC | 70.31 | — | [ |
LNG-LAES-Brayton | 70.6 | — | [ |
LNG-LAES(本研究) | 63.01 | 0.98 | - |
7 | 杨玉, 黄斌, 孟欣, 等. 基于二氧化碳热力循环的储能研究综述[J]. 热力发电, 2023, 52(6): 12-23. |
Yang Y, Huang B, Meng X, et al. Research summary on the energy storage technologies based on carbon dioxide thermodynamic cycle[J]. Thermal Power Generation, 2023, 52(6): 12-23. | |
8 | Zhang T T, She X H, You Z P, et al. Cryogenic thermoelectric generation using cold energy from a decoupled liquid air energy storage system for decentralised energy networks[J]. Applied Energy, 2022, 305: 117749. |
9 | Kumar S, Kwon H T, Choi K H, et al. LNG: an eco-friendly cryogenic fuel for sustainable development[J]. Applied Energy, 2011, 88(12): 4264-4273. |
10 | 李俊, 陈煜. LNG冷能回收及梯级利用研究进展[J]. 制冷学报, 2022, 43(2): 1-12. |
Li J, Chen Y. Research progress of cold energy recovery and cascade utilization of LNG[J]. Journal of Refrigeration, 2022, 43(2): 1-12. | |
11 | 王凯. 中间介质气化器综述[J]. 云南化工, 2020, 47(10): 38-39, 42. |
Wang K. Summary of intermediate medium gasifiers[J]. Yunnan Chemical Technology, 2020, 47(10): 38-39, 42. | |
12 | Moghimi M, Emadi M, Mirzazade Akbarpoor A, et al. Energy and exergy investigation of a combined cooling, heating, power generation, and seawater desalination system[J]. Applied Thermal Engineering, 2018, 140: 814-827. |
13 | Zhang T, Chen L J, Zhang X L, et al. Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy[J]. Energy, 2018, 155: 641-650. |
14 | Saleh Kandezi M, Mousavi Naeenian S M. Investigation of an efficient and green system based on liquid air energy storage (LAES) for district cooling and peak shaving: energy and exergy analyses[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101396. |
15 | Liu Z, Yang X Q, Jia W G, et al. Justification of CO2 as the working fluid for a compressed gas energy storage system: a thermodynamic and economic study[J]. Journal of Energy Storage, 2020, 27: 101132. |
16 | Lee I, Park J, You F Q, et al. A novel cryogenic energy storage system with LNG direct expansion regasification: design, energy optimization, and exergy analysis[J]. Energy, 2019, 173: 691-705. |
17 | 张晨. 基于LNG冷能氮膨胀制冷的空分工艺优化研究[D]. 成都: 西南石油大学, 2018. |
Zhang C. Air separation process based on the expanded nitrogen refrigeration of LNG cold energy[D]. Chengdu: Southwest Petroleum University, 2018. | |
18 | Pan J, Li M F, Li R, et al. Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic Rankine cycle and direct cooling[J]. Applied Thermal Engineering, 2022, 213: 118672. |
19 | Bao J J, He X, Deng Y Y, et al. Parametric analysis and multi-objective optimization of a new combined system of liquid carbon dioxide energy storage and liquid natural gas cold energy power generation[J]. Journal of Cleaner Production, 2022, 363: 132591. |
20 | Morandin M, Mercangöz M, Hemrle J, et al. Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles[J]. Energy, 2013, 58: 571-587. |
21 | Liang T, Zhang T T, Lin X P, et al. Liquid air energy storage technology: a comprehensive review of research, development and deployment[J]. Progress in Energy, 2023, 5(1): 012002. |
22 | Mersch M, Sapin P, Olympios A V, et al. A unified framework for the thermo-economic optimisation of compressed-air energy storage systems with solid and liquid thermal stores[J]. Energy Conversion and Management, 2023, 287: 117061. |
23 | Li Y, Teng S Y, Xi H. 3E analyses of a cogeneration system based on compressed air energy storage system, solar collector and organic Rankine cycle[J]. Case Studies in Thermal Engineering, 2023, 42: 102753. |
24 | Qi M, Park J, Kim J, et al. Advanced integration of LNG regasification power plant with liquid air energy storage: enhancements in flexibility, safety, and power generation[J]. Applied Energy, 2020, 269: 115049. |
25 | Marcinichen J B, Olivier J A, de Oliveira V, et al. A review of on-chip micro-evaporation: experimental evaluation of liquid pumping and vapor compression driven cooling systems and control[J]. Applied Energy, 2012, 92: 147-161. |
26 | 姬海民, 韩伟, 赵瀚辰, 等. 液态空气储能与液态CO2储能技术对比[J]. 科学技术与工程, 2023, 23(13): 5539-5546. |
Ji H M, Han W, Zhao H C, et al. Comparison of liquid air energy storage and liquid CO2 energy storage technology[J]. Science Technology and Engineering, 2023, 23(13): 5539-5546. | |
27 | Mehrpooya M, Moftakhari Sharifzadeh M M, Rosen M A. Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization[J]. Energy, 2015, 90: 2047-2069. |
28 | Wang M K, Zhao P, Wu Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823. |
29 | Liu X, Yan X W, Liu X L, et al. Comprehensive evaluation of a novel liquid carbon dioxide energy storage system with cold recuperator: energy, conventional exergy and advanced exergy analysis[J]. Energy Conversion and Management, 2021, 250: 114909. |
30 | Wu C, Wan Y K, Liu Y, et al. Thermodynamic simulation and economic analysis of a novel liquid carbon dioxide energy storage system[J]. Journal of Energy Storage, 2022, 55: 105544. |
31 | Tang B, Sun L, Xie Y H. Comprehensive performance evaluation and optimization of a liquid carbon dioxide energy storage system with heat source[J]. Applied Thermal Engineering, 2022, 215: 118957. |
32 | Guizzi G L, Manno M, Tolomei L M, et al. Thermodynamic analysis of a liquid air energy storage system[J]. Energy, 2015, 93: 1639-1647. |
33 | Sciacovelli A, Vecchi A, Ding Y. Liquid air energy storage (LAES) with packed bed cold thermal storage—from component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98. |
34 | Cui S S, He Q, Liu Y X, et al. Techno-economic analysis of multi-generation liquid air energy storage system[J]. Applied Thermal Engineering, 2021, 198: 117511. |
35 | Gao Z Z, Guo L N, Ji W, et al. Thermodynamic and economic analysis of a trigeneration system based on liquid air energy storage under different operating modes[J]. Energy Conversion and Management, 2020, 221: 113184. |
36 | Lee I, You F Q. Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy[J]. Applied Energy, 2019, 242: 168-180. |
37 | Lee I, Park J, Moon I. Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: cold and power integration[J]. Energy, 2017, 140: 106-115. |
38 | She X H, Zhang T T, Cong L, et al. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement[J]. Applied Energy, 2019, 251: 113355. |
39 | Qi M, Park J, Lee I, et al. Liquid air as an emerging energy vector towards carbon neutrality: a multi-scale systems perspective[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112201. |
40 | An B L, Chen J X, Deng Z, et al. Design and testing of a high performance liquid phase cold storage system for liquid air energy storage[J]. Energy Conversion and Management, 2020, 226: 113520. |
41 | Dewevre F, Lacroix C, Loubar K, et al. Carbon dioxide energy storage systems: current researches and perspectives[J]. Renewable Energy, 2024, 224: 120030. |
42 | Alami A H, Hawili A A, Hassan R, et al. Experimental study of carbon dioxide as working fluid in a closed-loop compressed gas energy storage system[J]. Renewable Energy, 2019, 134: 603-611. |
1 | Olabi A G, Onumaegbu C, Wilberforce T, et al. Critical review of energy storage systems[J]. Energy, 2021, 214: 118987. |
2 | 苏要港, 吴晓南, 廖柏睿, 等. 耦合LNG冷能及ORC的新型液化空气储能系统分析[J]. 储能科学与技术, 2022, 11(6): 1996-2006. |
Su Y G, Wu X N, Liao B R, et al. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC[J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. | |
3 | Olabi A G, Wilberforce T, Ramadan M, et al. compressed air energy storage systems: components and operating parameters—a review[J]. Journal of Energy Storage, 2021, 34: 102000. |
4 | Vecchi A, Li Y L, Ding Y L, et al. Liquid air energy storage (LAES): a review on technology state-of-the-art, integration pathways and future perspectives[J]. Advances in Applied Energy, 2021, 3: 100047. |
5 | Xu M J, Zhao P, Huo Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: 118437. |
6 | 张家俊, 李晓琼, 张振涛, 等. 压缩二氧化碳储能系统研究进展[J]. 储能科学与技术, 2023, 12(6): 1928-1945. |
Zhang J J, Li X Q, Zhang Z T, et al. Research progress of compressed carbon dioxide energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. |
[1] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[2] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[3] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
[4] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[5] | Haoqi CHEN, Bohui SHI, Qi PENG, Qi KANG, Shangfei SONG, Haiyuan YAO, Haihong CHEN, Haihao WU, Jing GONG. Phase equilibrium calculation of acid/alcohol hydrocarbon and water system based on stability analysis [J]. CIESC Journal, 2024, 75(3): 789-800. |
[6] | Xinzi ZHOU, Zenghui LI, Xianyang MENG, Jiangtao WU. Experimental study on viscosity of high purity air at low temperatures [J]. CIESC Journal, 2024, 75(3): 782-788. |
[7] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[8] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[9] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[10] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[11] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[12] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[13] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[14] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[15] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 251
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||