CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1180-1190.DOI: 10.11949/0438-1157.20240922
• Energy and environmental engineering • Previous Articles Next Articles
Yao FU(), Yingjuan SHAO(
), Wenqi ZHONG
Received:
2024-08-13
Revised:
2024-09-28
Online:
2025-03-28
Published:
2025-03-25
Contact:
Yingjuan SHAO
通讯作者:
邵应娟
作者简介:
伏遥(1999—),女,硕士研究生,fuyao_hhr@163.com
基金资助:
CLC Number:
Yao FU, Yingjuan SHAO, Wenqi ZHONG. Experimental study on cyclic heat storage performance of TiO2-doped calcium based materials under pressurized carbonation[J]. CIESC Journal, 2025, 76(3): 1180-1190.
伏遥, 邵应娟, 钟文琪. TiO2掺杂钙基材料加压碳酸化循环储热性能实验研究[J]. 化工学报, 2025, 76(3): 1180-1190.
实验组 | TiO2掺杂量/% | 碳酸化 温度/℃ | 碳酸化 压力/MPa | 循环次数 |
---|---|---|---|---|
1 | 0 | 850 | 0.8 | 15 |
2 | 2 | 850 | 0.8 | 15 |
3 | 5 | 850 | 0.8 | 15 |
4 | 10 | 850 | 0.8 | 15 |
5 | 15 | 850 | 0.8 | 15 |
6 | 20 | 850 | 0.8 | 15 |
7 | 5 | 850 | 0.1 | 10 |
8 | 5 | 850 | 0.2 | 10 |
9 | 5 | 850 | 0.4 | 10 |
10 | 5 | 850 | 0.6 | 10 |
11 | 5 | 750 | 0.8 | 10 |
12 | 5 | 800 | 0.8 | 10 |
13 | 5 | 900 | 0.8 | 10 |
14 | 0 | 850 | 0.1 | 30 |
15 | 0 | 850 | 0.8 | 30 |
16 | 5 | 850 | 0.1 | 30 |
17 | 5 | 850 | 0.8 | 30 |
Table 1 Experimental design scheme
实验组 | TiO2掺杂量/% | 碳酸化 温度/℃ | 碳酸化 压力/MPa | 循环次数 |
---|---|---|---|---|
1 | 0 | 850 | 0.8 | 15 |
2 | 2 | 850 | 0.8 | 15 |
3 | 5 | 850 | 0.8 | 15 |
4 | 10 | 850 | 0.8 | 15 |
5 | 15 | 850 | 0.8 | 15 |
6 | 20 | 850 | 0.8 | 15 |
7 | 5 | 850 | 0.1 | 10 |
8 | 5 | 850 | 0.2 | 10 |
9 | 5 | 850 | 0.4 | 10 |
10 | 5 | 850 | 0.6 | 10 |
11 | 5 | 750 | 0.8 | 10 |
12 | 5 | 800 | 0.8 | 10 |
13 | 5 | 900 | 0.8 | 10 |
14 | 0 | 850 | 0.1 | 30 |
15 | 0 | 850 | 0.8 | 30 |
16 | 5 | 850 | 0.1 | 30 |
17 | 5 | 850 | 0.8 | 30 |
Fig.12 SEM images of calcined CaCO3 and calcined CaCO3-5TiO2 at different cycles under pressurized/atmospheric carbonation(a) initial calcined CaCO3; (b) calcined CaCO3 cycled 30 times at 0.1 MPa; (c) calcined CaCO3 cycled 30 times at 0.8 MPa;(d) initial calcined CaCO3-5TiO2; (e) calcined CaCO3-5TiO2 cycled 30 times at 0.1 MPa; (f) calcined CaCO3-5TiO2 cycled 30 times at 0.8 MPa
Fig.13 TEM images of calcined CaCO3 and calcined CaCO3-5TiO2 at different cycles under pressurized/atmospheric carbonation(a) initial calcined CaCO3; (b) calcined CaCO3 cycled 30 times at 0.1 MPa; (c) calcined CaCO3 cycled 30 times at 0.8 MPa;(d) initial calcined CaCO3-5TiO2; (e) calcined CaCO3-5TiO2 cycled 30 times at 0.1 MPa; (f) calcined CaCO3-5TiO2 cycled 30 times at 0.8 MPa
样品 | 循环次数 | 碳酸化压力/MPa | 比表面积/(m²/g) | 比孔容/(cm³/g) |
---|---|---|---|---|
煅烧纯CaCO3 | 0 | — | 19.582 | 0.133 |
30 | 0.1 | 3.248 | 0.028 | |
30 | 0.8 | 4.401 | 0.052 | |
煅烧CaCO3-5TiO2 | 0 | — | 11.768 | 0.117 |
30 | 0.1 | 7.414 | 0.069 | |
30 | 0.8 | 8.918 | 0.075 |
Table 2 Specific surface area and pore volume of calcined CaCO3 and calcined CaCO3-5TiO2
样品 | 循环次数 | 碳酸化压力/MPa | 比表面积/(m²/g) | 比孔容/(cm³/g) |
---|---|---|---|---|
煅烧纯CaCO3 | 0 | — | 19.582 | 0.133 |
30 | 0.1 | 3.248 | 0.028 | |
30 | 0.8 | 4.401 | 0.052 | |
煅烧CaCO3-5TiO2 | 0 | — | 11.768 | 0.117 |
30 | 0.1 | 7.414 | 0.069 | |
30 | 0.8 | 8.918 | 0.075 |
1 | 潘怡, 刘敦禹, 金晶. CaO/CaCO3储能系统材料设计研究进展[J]. 动力工程学报, 2024, 44(5): 770-781. |
Pan Y, Liu D Y, Jin J. Research progress on material design of CaO/CaCO3 energy storage system[J]. Journal of Chinese Society of Power Engineering, 2024, 44 (5): 770-781. | |
2 | Han R, Xing S, Wu X Q, et al. Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO3 cycles[J]. Renewable Energy, 2022, 181: 267-277. |
3 | Liu Y N, Deng S, Zhao R K, et al. Energy-saving pathway exploration of CCS integrated with solar energy: a review of innovative concepts[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 652-669. |
4 | Wang X R, Liu X L, Zheng H B, et al. Hierarchically doping calcium carbonate pellets for directly solar-driven high-temperature thermochemical energy storage[J]. Solar Energy, 2023, 251: 197-207. |
5 | Cheng K L, Li J H, Yu J C, et al. Novel thermoelectric generator enhanced supercritical carbon dioxide closed-brayton-cycle power generation systems: performance comparison and configuration optimization[J]. Energy, 2023, 284: 129368. |
6 | Ortiz C, Romano M C, Valverde J M, et al. Process integration of Calcium-looping thermochemical energy storage system in concentrating solar power plants[J]. Energy, 2018, 155: 535-551. |
7 | 郑玉圆, 葛志伟, 韩翔宇, 等. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
Zheng Y Y, Ge Z W, Han X Y, et al. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials[J]. CIESC Journal, 2023, 74(8): 3171-3192. | |
8 | 孙健, 柏生斌, 周子健, 等. CaCO3/CaO复合材料热化学储能特性研究进展[J]. 华中科技大学学报(自然科学版), 2023, 51(1): 123-132. |
Sun J, Bai S B, Zhou Z J, et al. Research progress on thermochemical energy storage properties of CaCO3/CaO compound composites[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(1): 123-132. | |
9 | Cannone S F, Stendardo S, Lanzini A. Solar-powered Rankine cycle assisted by an innovative calcium looping process as an energy storage system[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6977-6993. |
10 | Edwards S E B, Materić V. Calcium looping in solar power generation plants[J]. Solar Energy, 2012, 86(9): 2494-2503. |
11 | Ortiz D C, Valverde M J M, Chacartegui R, et al. Carbonation of limestone derived CaO for thermochemical energy storage: from kinetics to process integration in concentrating solar plants[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(5): 6404-6417. |
12 | Chen X Y, Jin X G, Ling X, et al. Indirect integration of thermochemical energy storage with the recompression supercritical CO2 Brayton cycle[J]. Energy, 2020, 209: 118452. |
13 | Rodrigues D, Pinheiro C I C, Filipe R M, et al. Optimization of an improved calcium-looping process for thermochemical energy storage in concentrating solar power plants[J]. Journal of Energy Storage, 2023, 72:108199. |
14 | Nie F L, Ma T Z, Zhang Q Q, et al. Heat storage and release characteristics of a prototype CaCO3/CaO thermochemical energy storage system based on a novel fluidized bed solar reactor[J]. Journal of Cleaner Production, 2024, 450: 142003. |
15 | Li C L, Li Y J, Zhang C X, et al. Ca3B2O6-modified papermaking white mud for CaCO3/CaO thermochemical energy storage[J]. Chemical Engineering Journal, 2023, 461: 142096. |
16 | Liu X L, Yuan C J, Zheng H B, et al. Synergy of Li2CO3 promoters and Al-Mn-Fe stabilizers in CaCO3 pellets enables efficient direct solar-driven thermochemical energy storage[J]. Materials Today Energy, 2022, 30: 101174. |
17 | Huang X K, Ma X T, Li J, et al. Enhancement effects of hydrolysable/soluble Al-type dopants on the efficiency of CaO/CaCO3 thermochemical energy storage[J]. Chemical Engineering Journal, 2024, 490: 151555. |
18 | Sun H, Li Y J, Bian Z G, et al. Thermochemical energy storage performances of Ca-based natural and waste materials under high pressure during CaO/CaCO3 cycles[J].Energy Conversion and Management, 2019, 197: 111885. |
19 | Li B Y, Li Y J, Sun H, et al. Thermochemical heat storage performance of CaO pellets fabricated by extrusion-spheronization under harsh calcination conditions[J]. Energy & Fuels, 2020, 34(5): 6462-6473. |
20 | Xu Y F, Li Y J, Zhang C X, et al. High-temperature thermochemical heat storage performance of CaO honeycombs during CaO/CaCO3 cycles[J]. Energy & Fuels, 2021, 35(20): 16882-16893. |
21 | Pang H, Xu H R, Sun A W, et al. Characteristics of MgO-based sorbents for CO2 capture at elevated temperature and pressure[J]. Applied Surface Science, 2022, 598: 153852. |
22 | Khosa A A, Xu T X, Xia B Q, et al. Technological challenges and industrial applications of CaCO3/CaO based thermal energy storage system—a review[J]. Solar Energy, 2019, 193:618-636. |
23 | Tian X K, Lin S C, Yan J, et al. Sintering mechanism of calcium oxide/calcium carbonate during thermochemical heat storage process[J]. Chemical Engineering Journal, 2022, 428: 131229. |
24 | Khosa A A, Zhao C Y. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica[J]. Solar Energy, 2019, 188: 619-630. |
25 | Wang K, Gu F, Clough P T, et al. Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants[J]. Chemical Engineering Journal, 2020, 390: 124163. |
26 | Khosa A A, Yan J, Zhao C Y. Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system[J]. Energy, 2021, 215: 119132. |
27 | Han R, Gao J H, Wei S Y, et al. High-performance CaO-based composites synthesized using a space-confined chemical vapor deposition strategy for thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110346. |
28 | Xu T X, Tian X K, Khosa A A, et al. Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor[J]. Energy, 2021, 236: 121451. |
29 | Hao Y J, Tian L G, Duan E H, et al. Low-temperature methane oxidation triggered by peroxide radicals over noble-metal-free MgO catalyst[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21761-21771. |
30 | Liu H, Pan F F, Wu S F. The grain growth mechanism of nano-CaO regenerated by nano-CaCO3 in calcium looping [J]. RSC Advances, 2019, 9(46): 26949-26955. |
31 | Li Y J, Zhao C S, Chen H C, et al. Modified CaO-based sorbent looping cycle for CO2 mitigation[J]. Fuel, 2009, 88(4): 697-704. |
32 | Hu Y, Liu W, Chen H, et al. Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture[J]. Fuel, 2016, 181: 199-206. |
33 | Bai S B, Sun J, Zhou Z J, et al. Structurally improved, TiO2-incorporated, CaO-based pellets for thermochemical energy storage in concentrated solar power plants[J]. Solar Energy Materials and Solar Cells, 2021, 226: 111076. |
34 | 刘昊, 吴素芳. 固相反应对纳米钙基CO2吸附剂自激活的影响[J]. 高校化学工程学报, 2021, 35(1): 57-64. |
Liu H, Wu S F. Effect of solid-phase reaction on self-reactivation of nano-calcium-based CO2 adsorbents[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(1): 57-64. | |
35 | Benitez-Guerrero M, Valverde J M, Sanchez-Jimenez P E, et al. Calcium-looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture[J]. Chemical Engineering Journal, 2018, 334: 2343-2355. |
[1] | Sanlong WANG, Yuelin WANG, Yu CAO. Research on the performance of inorganic perovskite solar cells based on phase heterojunction [J]. CIESC Journal, 2025, 76(3): 1346-1352. |
[2] | Jiayi YAO, Donghui ZHANG, Zhongli TANG, Wenbin LI. Research on carbon capture by pressure swing adsorption based on two-stage dual reflux [J]. CIESC Journal, 2025, 76(2): 744-754. |
[3] | Zheng GONG, Xiulu GAO, Ling ZHAO, Dongdong HU. Preparation and shape memory properties of PBAT/PLA foams by supercritical CO2 [J]. CIESC Journal, 2025, 76(2): 888-896. |
[4] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
[5] | Jiaxin WANG, Yanhong WEI, Shunyang NONG, Yanshu XIONG, Mei LI, Wen LI. Molecular mechanism analysis of melanoidin adsorption by polyamine-modified chitosan aerogel based on multiple quantum chemical theory calculations [J]. CIESC Journal, 2025, 76(1): 107-119. |
[6] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[7] | Yanlin CHEN, Aiguo ZHOU, Jiale ZHENG, Chuanruo YANG, Tianshu GE. Effects of support materials on amine-impregnated DAC adsorbents [J]. CIESC Journal, 2024, 75(S1): 217-222. |
[8] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
[9] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[10] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[11] | Bei PEI, Zhibin HAO, Tianxiang XU, Ziqi ZHONG, Rui LI, Chong JIA, Yulong DUAN. Effect of surfactants on fire extinguishing efficiency of salted double fluid fine water mist [J]. CIESC Journal, 2024, 75(9): 3369-3378. |
[12] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[13] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[14] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[15] | Mingjun YANG, Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN, Yongchen SONG. Research on the enhanced method of CO2-seawater hydrate generation [J]. CIESC Journal, 2024, 75(8): 2939-2948. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||