CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1029-1039.DOI: 10.11949/0438-1157.20241002
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jing ZHANG1,2(), Guang YANG1, Aibo JIAN1, Simiao CHENG1, Shaozhe WANG1, Bin GONG1(
)
Received:
2024-09-05
Revised:
2024-10-05
Online:
2025-03-28
Published:
2025-03-25
Contact:
Bin GONG
张静1,2(), 杨光1, 菅爱博1, 程思淼1, 王绍哲1, 龚斌1(
)
通讯作者:
龚斌
作者简介:
张静(1971—),女,硕士,教授,2501474185@qq.com
基金资助:
CLC Number:
Jing ZHANG, Guang YANG, Aibo JIAN, Simiao CHENG, Shaozhe WANG, Bin GONG. Analysis of double droplets impact-coalescence process based on underwater concave-wall[J]. CIESC Journal, 2025, 76(3): 1029-1039.
张静, 杨光, 菅爱博, 程思淼, 王绍哲, 龚斌. 基于水下凹壁面上双油滴撞壁-聚并过程分析[J]. 化工学报, 2025, 76(3): 1029-1039.
参数/mm | 数值 |
---|---|
计算域宽度B | 60 |
计算域直边高度H | 75 |
凹壁面曲率半径R | 75 |
下落高度h0 | 115 |
左侧油滴偏心距el | 65 |
右侧油滴偏心距er | 33.0~58.5 |
油滴初始粒径d0 | 2.2~6.4 |
Table 1 Structure size and initial droplet parameter
参数/mm | 数值 |
---|---|
计算域宽度B | 60 |
计算域直边高度H | 75 |
凹壁面曲率半径R | 75 |
下落高度h0 | 115 |
左侧油滴偏心距el | 65 |
右侧油滴偏心距er | 33.0~58.5 |
油滴初始粒径d0 | 2.2~6.4 |
网格方案 | 油水界面 细化阈值 | 流体域 粗化阈值 | 最小网格 尺寸/mm | 最多网格 数量/个 | 网格最大 增量/% |
---|---|---|---|---|---|
Plan-0 | 无 | 无 | 1 | 367360 | — |
Plan-1 | 10-2 | 10-3 | 0.0129 | 528969 | 43.9 |
Plan-2 | 10-2 | 10-4 | 0.0133 | 532805 | 44.9 |
Plan-3 | 10-3 | 10-4 | 0.0143 | 531363 | 44.5 |
Plan-4 | 10-4 | 10-4 | 0.0143 | 591962 | 61.0 |
Table 2 Grid plans
网格方案 | 油水界面 细化阈值 | 流体域 粗化阈值 | 最小网格 尺寸/mm | 最多网格 数量/个 | 网格最大 增量/% |
---|---|---|---|---|---|
Plan-0 | 无 | 无 | 1 | 367360 | — |
Plan-1 | 10-2 | 10-3 | 0.0129 | 528969 | 43.9 |
Plan-2 | 10-2 | 10-4 | 0.0133 | 532805 | 44.9 |
Plan-3 | 10-3 | 10-4 | 0.0143 | 531363 | 44.5 |
Plan-4 | 10-4 | 10-4 | 0.0143 | 591962 | 61.0 |
参数 | 数值 |
---|---|
连续相密度ρc/(kg/m3) | 998.2 |
连续相黏度μc/(kg/(m·s)) | 1.003×10-3 |
离散相密度ρd/(kg/m3) | 1595.0 |
离散相黏度μd/(kg/(m·s)) | 9.69×10-4 |
界面张力σ/(N/m) | 4.57×10-2 |
重力加速度g/(m/s2) | 9.81 |
Table 3 Parameters of continuous-phase and discrete-phase at293.15 K
参数 | 数值 |
---|---|
连续相密度ρc/(kg/m3) | 998.2 |
连续相黏度μc/(kg/(m·s)) | 1.003×10-3 |
离散相密度ρd/(kg/m3) | 1595.0 |
离散相黏度μd/(kg/(m·s)) | 9.69×10-4 |
界面张力σ/(N/m) | 4.57×10-2 |
重力加速度g/(m/s2) | 9.81 |
Fig.4 Experimental setup for double droplets impact on concave-wall1—water-sealed CCl4; 2—peristaltic pump; 3—needle; 4—camera; 5—macro lens; 6—lamp plate; 7—tank; 8—concave-wall; 9—CCD camera; 10—camera bracket
1 | Zang D Y, Yu Y K, Chen Z, et al. Acoustic levitation of liquid drops: dynamics, manipulation and phase transitions[J]. Advances in Colloid and Interface Science, 2017, 243: 77-85. |
2 | Borcia R, Bestehorn M. On the coalescence of sessile drops with miscible liquids[J]. The European Physical Journal. E, Soft Matter, 2011, 34(8): 81. |
3 | 邢雷, 苗春雨, 蒋明虎, 等. 多级螺旋分离器结构优化设计与性能分析[J]. 化工学报, 2023, 74(11): 4587-4599. |
Xing L, Miao C Y, Jiang M H, et al. Optimal design and performance analysis of multi-stage spiral separator[J]. CIESC Journal, 2023, 74(11): 4587-4599. | |
4 | 武秋敏, 苏昕, 崔忻羽. 喷墨印刷液滴的铺展特性研究[J]. 包装工程, 2023, 44(11): 227-234. |
Wu Q M, Su X, Cui X Y. Spreading characteristics of inkjet printing droplets[J]. Packaging Engineering, 2023, 44(11): 227-234. | |
5 | Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces[J]. Atomization and Sprays, 2001, 11(2): 155-165. |
6 | 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751. |
Liang C, Wang H, Zhu X, et al. Numerical simulation of droplet impact on surfaces with different wettabilities[J]. CIESC Journal, 2013, 64(8): 2745-2751. | |
7 | 周超, 魏超政. 单液滴冲击超疏水壁面的压力特性研究[J]. 工程热物理学报, 2021, 42(12): 3238-3248. |
Zhou C, Wei C Z. Study on the pressure characteristics of single droplet impact super-hydrophobic wall surface[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3238-3248. | |
8 | Zhang R, Hao P F, He F. Drop impact on oblique superhydrophobic surfaces with two-tier roughness[J]. Langmuir, 2017, 33(14): 3556-3567. |
9 | Wang H, Liu C, Zhan H Y, et al. Droplet asymmetric bouncing on inclined superhydrophobic surfaces[J]. ACS Omega, 2019, 4(7): 12238-12243. |
10 | Antonini C, Villa F, Marengo M. Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps[J]. Experiments in Fluids, 2014, 55(4): 1713. |
11 | Shen C Q, Yu C, Chen Y P. Spreading dynamics of droplet on an inclined surface[J]. Theoretical and Computational Fluid Dynamics, 2016, 30(3): 237-252. |
12 | Chen W Y, Yang F, Yan Y H, et al. Lattice Boltzmann simulation of the spreading behavior of a droplet impacting on inclined solid wall[J]. Journal of Mechanical Science and Technology, 2018, 32(6): 2637-2649. |
13 | Ouyang S, Xiong Z Q, Zhao J Y, et al. Droplet impact on a concave wall in a rotating gas flow field[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106131. |
14 | 张静, 张浩, 龚斌, 等. 水下四氯化碳单液滴在凹壁面上的动态特性[J]. 过程工程学报, 2022, 22(12): 1613-1622. |
Zhang J, Zhang H, Gong B, et al. Dynamic characteristic of single CCl4 droplet underwater on concave-wall[J]. The Chinese Journal of Process Engineering, 2022, 22(12): 1613-1622. | |
15 | 李逢超, 付宇, 李超, 等. 铝液滴撞击曲面的流动特性分析[J]. 物理学报, 2022, 71(18): 181-193. |
Li F C, Fu Y, Li C, et al. Flowing characteristics of aluminum droplets impacting curved surface[J]. Acta Physica Sinica, 2022, 71(18): 181-193. | |
16 | Sayyari H, Peiravi M M, Alinejad J. Surveying the effects of concave obstacles with different edge walls on hollow glycerin droplet impacting using the volume of fluid approach[J]. Advances in Mechanical Engineering, 2022, 14(11): 1-11. |
17 | 周晓庆, 李春煜, 杨光, 等. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
Zhou X Q, Li C Y, Yang G, et al. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature[J]. CIESC Journal, 2023, 74(S1): 141-153. | |
18 | Wang Y T, Qian L J, Chen Z L, et al. Coalescence of binary droplets in the transformer oil based on small amounts of polymer: effects of initial droplet diameter and collision parameter[J]. Polymers, 2020, 12(9): 2054. |
19 | Yuan S X, Dabirian R, Shoham O, et al. Numerical simulation of liquid droplet coalescence and breakup[J]. Journal of Energy Resources Technology, 2020, 142(10): 102101. |
20 | Gebauer F, Villwock J, Kraume M, et al. Detailed analysis of single drop coalescence—influence of ions on film drainage and coalescence time[J]. Chemical Engineering Research and Design, 2016, 115: 282-291. |
21 | Kamp J, Villwock J, Kraume M. Drop coalescence in technical liquid/liquid applications: a review on experimental techniques and modeling approaches[J]. Reviews in Chemical Engineering, 2017, 33(1): 1-47. |
22 | Roisman I V, Abboud M, Brockmann P, et al. Forced flows in liquid bridges[J]. Current Opinion in Colloid & Interface Science, 2023, 67: 101738. |
23 | Shen C Q, Chen Y Y, Yu C, et al. Numerical study on the liquid-liquid interface evolution during droplet coalescence[J]. Microgravity Science and Technology, 2020, 32(4): 737-748. |
24 | Peng L Q, Luo Z Y, Zuo Y Y, et al. Pinch-off of liquid bridge during droplet coalescence under constrained condition[J]. Chemical Engineering Science, 2018, 177: 471-480. |
25 | Xing L, Li J Y, Jiang M H, et al. Coalescence dynamics of droplets collision on substrates with different contact angles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670: 131573. |
26 | Huang J X, Wang L, He K. Three-dimensional study of double droplets impact on a wettability-patterned surface[J]. Computers & Fluids, 2022, 248: 105669. |
27 | Zhou X, Wang H, Wu J J, et al. Bounce behaviors of double droplets simultaneously impact cold superhydrophobic surface[J]. International Journal of Heat and Mass Transfer, 2023, 208: 124075. |
28 | Huang B, Nan X H, Fu C, et al. Probing the coalescence mechanism of oil droplets in fluids produced by oil wells and the microscopic interaction between molecules in oil films[J]. Energies, 2022, 15(12): 4274. |
29 | Jiang C Z, Wang Z H, Yang Q W, et al. Numerical investigations of collision modes of double droplets on a spherical surface based on the phase field method[J]. Korean Journal of Chemical Engineering, 2024, 41(6): 1551-1566. |
30 | Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337. |
31 | 周鑫, 马小晶, 胡丽娜, 等. 不同壁面条件下液滴撞击铺展特性的模拟研究[J]. 计算力学学报, 2022, 39(6): 761-767. |
Zhou X, Ma X J, Hu L N, et al. Simulation study on spreading characteristics of droplet impinging under different wall conditions[J]. Chinese Journal of Computational Mechanics, 2022, 39(6): 761-767. | |
32 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
33 | Chen Y L, Guo L, Sun W C, et al. Molecular dynamics simulations of wetting behaviors of droplets on surfaces with different rough structures[J]. International Journal of Multiphase Flow, 2023, 169: 104613. |
34 | 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究[J]. 物理学报, 2023, 72(2): 173-183. |
Zhang X L, Huang J J. Study on wetting and spreading behaviors of compound droplets on wedge by lattice Boltzmann method[J]. Acta Physica Sinica, 2023, 72(2): 173-183. | |
35 | Zhang J, Gao Y B, Gong B, et al. Experimental investigation on single-droplet deformation and breakup in a concave-wall jet[J]. Chemical Engineering & Technology, 2021, 44(2): 238-247. |
36 | 郝冠球, 刘向东, 陈永平. 电场调控剪切流场内液滴形变特性研究[J]. 工程热物理学报, 2024, 45(1): 129-134. |
Hao G Q, Liu X D, Chen Y P. Electric-field-controlled droplet deformation in a shear flow field[J]. Journal of Engineering Thermophysics, 2024, 45(1): 129-134. | |
37 | He H B, Liu Z, Ji J B, et al. Analysis of interaction and flow pattern of multiple bubbles in shear-thinning viscoelastic fluids[J]. Energies, 2023, 16(14): 5345. |
[1] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[2] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[3] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[4] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[5] | Yinning ZHANG, Jinqing WANG, Zhi FENG, Mingxiu ZHAN, Xu XU, Guangxue ZHANG, Zuohe CHI. Growth and coalescence behavior of bubbles in porous media under heating condition [J]. CIESC Journal, 2023, 74(4): 1509-1518. |
[6] | Xingmei HUANG, Ying ZHANG, Zongyong WANG, Yaxia LI, Li ZHANG. Aggregation characteristics of chlorine bubbles in brine under horizontal uniform electric field conditions [J]. CIESC Journal, 2023, 74(12): 4881-4891. |
[7] | Daoyin LIU, Zhiheng FAN, Jiliang MA, Xiaoping CHEN. Direct numerical simulation of restitution coefficient during oblique collision of wet particles [J]. CIESC Journal, 2023, 74(10): 4063-4073. |
[8] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[9] | Rui YANG, Baojin ZHU, Chao LYU, Lei ZHANG, Yingsong XIAO. Study on flow pattern and transition mechanism of gas-liquid two-phase flow in swirl field under pulsating flow [J]. CIESC Journal, 2022, 73(10): 4389-4398. |
[10] | SONG Fenhong, WANG Wei, CHEN Qicheng, FAN Jing. Coalescence characteristics of the double droplets under electric field [J]. CIESC Journal, 2021, 72(S1): 371-381. |
[11] | ZHAO Junyi, XUE Shidong, HAN Jingkun, WEN Rongfu, LAN Zhong, HAO Tingting, MA Xuehu. Research progress of binary droplet collision behavior and regulation mechanism [J]. CIESC Journal, 2021, 72(5): 2354-2372. |
[12] | PENG Qi, JIA Li, DING Yi, ZHANG Yongxin, DANG Chao, YIN Liaofei. The effect of confined microstructures on the coalescence-induced droplet jumping with low surface tension [J]. CIESC Journal, 2021, 72(4): 1920-1929. |
[13] | Huahai ZHANG, Yuelin WANG, Tiefeng WANG. Experimental study on effect of alcohol surfactants on bubble coalescence in full range of concentrations [J]. CIESC Journal, 2020, 71(9): 4161-4167. |
[14] | Rui LI, Yiren ZHANG, Hang CHEN, Guimin LU, Jianguo YU. Investigation on droplet oscillatory behavior after free binary collision and coalescence [J]. CIESC Journal, 2020, 71(4): 1482-1490. |
[15] | Hao ZHANG, Kai WANG. Microfluidic droplet coalescence study via microscopic image recognition [J]. CIESC Journal, 2020, 71(2): 526-534. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 46
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||