CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1422-1431.DOI: 10.11949/0438-1157.20241035
• Reviews and monographs • Previous Articles Next Articles
Di WU1,2(), Shipeng LIU2, Wenwei WANG1,2, Jiuchun JIANG1, Xiaoguang YANG1,2(
)
Received:
2024-09-14
Revised:
2024-10-12
Online:
2025-05-12
Published:
2025-04-25
Contact:
Xiaoguang YANG
吴迪1,2(), 刘世朋2, 王文伟1,2, 姜久春1, 杨晓光1,2(
)
通讯作者:
杨晓光
作者简介:
吴迪(1995—),男,博士研究生,w18832078582@163.com
基金资助:
CLC Number:
Di WU, Shipeng LIU, Wenwei WANG, Jiuchun JIANG, Xiaoguang YANG. Recent advances in the influence of mechanical pressure on the performance of lithium metal batteries[J]. CIESC Journal, 2025, 76(4): 1422-1431.
吴迪, 刘世朋, 王文伟, 姜久春, 杨晓光. 机械压力对锂金属电池性能影响的研究进展[J]. 化工学报, 2025, 76(4): 1422-1431.
夹具 | 种类 | 成本 | 测试精度 | 适用场景 | 不足 |
---|---|---|---|---|---|
扣式固态电池夹具 | — | 中等 | 较高 | 对电极材料进行研究 | 每一次实验需要对设备进行清洗,较为烦琐 |
恒间隙夹具 | 螺栓式 | 低 | 中等 | 大部分恒间隙测试场景 | 测试精度受夹板刚度影响 |
壳体结构式 | 低 | 低 | 适合较低压力场景 | 无法提供精确的压力控制 | |
锁止结构式 | 低 | 中等 | 适合较高压力场景 | 可能会在电极的中心区域产生更高的压力 | |
恒压力夹具 | 弹簧式 | 低 | 低 | 可以接受膨胀力在一个较小的范围内波动 | 测量结果受弹簧刚度影响很大 |
液压调节系统式 | 高 | 高 | 需要主动控制循环压力 | 成本过高 | |
气压调节系统式 | 较高 | 中等 | 需要实现均匀和精确调节的循环压力 | 电池产气后会堆积在极片上,而不会排入气囊 | |
混合模式夹具 | 弹片式 | 中等 | 较高 | 需要研究不同压力对电池性能的影响 | 长期使用中可能会有材料疲劳问题 |
弹簧螺栓式 | 较低 | 中等 | 需要保持均匀接触和受力 | 弹簧的主要作用为保持均匀接触,而不是使其恒压力 |
Table1 Comparison of battery mechanics fixtures
夹具 | 种类 | 成本 | 测试精度 | 适用场景 | 不足 |
---|---|---|---|---|---|
扣式固态电池夹具 | — | 中等 | 较高 | 对电极材料进行研究 | 每一次实验需要对设备进行清洗,较为烦琐 |
恒间隙夹具 | 螺栓式 | 低 | 中等 | 大部分恒间隙测试场景 | 测试精度受夹板刚度影响 |
壳体结构式 | 低 | 低 | 适合较低压力场景 | 无法提供精确的压力控制 | |
锁止结构式 | 低 | 中等 | 适合较高压力场景 | 可能会在电极的中心区域产生更高的压力 | |
恒压力夹具 | 弹簧式 | 低 | 低 | 可以接受膨胀力在一个较小的范围内波动 | 测量结果受弹簧刚度影响很大 |
液压调节系统式 | 高 | 高 | 需要主动控制循环压力 | 成本过高 | |
气压调节系统式 | 较高 | 中等 | 需要实现均匀和精确调节的循环压力 | 电池产气后会堆积在极片上,而不会排入气囊 | |
混合模式夹具 | 弹片式 | 中等 | 较高 | 需要研究不同压力对电池性能的影响 | 长期使用中可能会有材料疲劳问题 |
弹簧螺栓式 | 较低 | 中等 | 需要保持均匀接触和受力 | 弹簧的主要作用为保持均匀接触,而不是使其恒压力 |
1 | Ruan D, Tan L, Chen S, et al. Solvent versus anion chemistry: unveiling the structure-dependent reactivity in tailoring electrochemical interphases for lithium-metal batteries[J]. JACS Au, 2023, 3(3): 953-963. |
2 | Mao M, Ji X, Wang Q, et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries[J]. Nature Communications, 2023, 14(1): 1082. |
3 | Louli A J, Genovese M, Weber R, et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells[J]. Journal of the Electrochemical Society, 2019, 166(8): A1291-A1299. |
4 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
5 | Mao M, Gong L, Wang X, et al. Electrolyte design combining fluoro-with cyano-substitution solvents for anode-free Li metal batteries[J]. Proceedings of the National Academy of Sciences, 2024, 121(5): e2316212121. |
6 | Fang M, Yue X, Dong Y, et al. A temperature-dependent solvating electrolyte for wide-temperature and fast-charging lithium metal batteries[J]. Joule, 2024, 8(1): 91-103. |
7 | Bachman J C, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162. |
8 | Chen S, Fan J, Cui Z, et al. Unveiling the critical role of ion coordination configuration of ether electrolytes for high voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2023, 62(23): e202219310. |
9 | Li Z, Rao H, Atwi R, et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14(1): 868. |
10 | Li A M, Borodin O, Pollard T P, et al. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nature Chemistry, 2024, 16(6): 922-929. |
11 | Cui Z, Jia Z, Ruan D, et al. Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries[J]. Nature Communications, 2024, 15(1): 2033. |
12 | 丰闪闪, 刘晓斌, 郭石麟, 等. 锂枝晶的成核、生长与抑制[J]. 化工学报, 2022, 73(1): 97-109. |
Feng S S, Liu X B, Guo S L, et al. Nucleation, growth and inhibition of lithium dendrites[J]. CIESC Journal, 2022, 73(1): 97-109. | |
72 | amamoto M Y, Terauchi Y, Sakuda A, et al. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries[J]. Journal of Power Sources, 2020, 473: 228595. |
73 | Zhang X, Wang Q J, Harrison K L, et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries[J]. Journal of the Electrochemical Society, 2019, 166(15): A3639. |
74 | Tian H K, Qi Y. Simulation of the effect of contact area loss in all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(11): E3512-E3521. |
75 | Hänsel C, Kundu D. The stack pressure dilemma in sulfide electrolyte based Li metal solid-state batteries: a case study with Li6PS5Cl solid electrolyte[J]. Advanced Materials Interfaces, 2021, 8(10): 2100206. |
76 | 王浩, 曾涛, 刘伯峥, 等. 测试夹具对磷酸铁锂电池循环性能影响[J]. 能源研究与管理, 2022(3): 56-62. |
Wang H, Zeng T, Liu B Z, et al. Effect of test fixture on cycle performance of lithium iron phosphate battery[J]. Energy Research and Management, 2022(3): 56-62. | |
77 | Louli A J, Eldesoky A, Weber R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J]. Nature Energy, 2020, 5: 693-702. |
78 | Mussa A S, Klett M, Lindbergh G, et al. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells[J]. Journal of Power Sources, 2018, 385: 18-26. |
79 | Deich T, Storch M, Steiner K, et al. Effects of module stiffness and initial compression on lithium-ion cell aging[J]. Journal of Power Sources, 2021, 506: 230163. |
80 | Chen Y T, Jang J, Oh J A S, et al. Enabling uniform and accurate control of cycling pressure for all-solid-state batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304327. |
81 | Louli A J, Li J, Trussler S, et al. Volume, pressure and thickness evolution of Li-ion pouch cells with silicon-composite negative electrodes[J]. Journal of the Electrochemical Society, 2017, 164(12): A2689-A2696. |
13 | Xia Y, Zhou P, Kong X, et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries[J]. Nature Energy, 2023, 8(9): 934-945. |
14 | Zhang Z, Han W Q. From liquid to solid-state lithium metal batteries: fundamental issues and recent developments[J]. Nano-Micro Letters, 2024, 16(1): 24. |
15 | Tran T N, Cao X, Xu Y, et al. Enhancing cycling stability of lithium metal batteries by a bifunctional fluorinated ether[J]. Advanced Functional Materials, 2024, 34(42): 2407012. |
16 | Zhang Q K, Zhang X Q, Wan J, et al. Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries[J]. Nature Energy, 2023, 8(7): 725-735. |
17 | Hobold G M, Wang C, Steinberg K, et al. High lithium oxide prevalence in the lithium solid-electrolyte interphase for high Coulombic efficiency[J]. Nature Energy, 2024, 9(5): 580-591. |
18 | Tan Y H, Liu Z, Zheng J H, et al. Inorganic composition modulation of solid electrolyte interphase for fast charging lithium metal batteries[J]. Advanced Materials, 2024, 36(30): 2404815. |
19 | Zhang F, Guo Y, Zhang L, et al. A review of the effect of external pressure on all-solid-state batteries[J]. Etransportation, 2023, 15: 100220. |
20 | Xie H, Feng J, Zhao H. Lithium metal batteries with all-solid/full-liquid configurations[J]. Energy Storage Materials, 2023, 61: 102918. |
21 | 崔锦, 石川, 赵金保. 机械压力对锂电池性能影响的研究进展[J]. 化工学报, 2021, 72(7): 3511-3523. |
Cui J, Shi C, Zhao J B. Research progress on the effect of mechanical pressure on the performance of lithium batteries[J]. CIESC Journal, 2021, 72(7): 3511-3523. | |
22 | Sun Z T, Bo S H. Understanding electro-mechanical-thermal coupling in solid-state lithium metal batteries via phase-field modeling[J]. Journal of Materials Research, 2022, 37(19): 3130-3145. |
23 | Xu R, Yan C, Huang J Q. Competitive solid-electrolyte interphase formation on working lithium anodes[J]. Trends in Chemistry, 2021, 3(1): 5-14. |
24 | Zhao Q, Stalin S, Archer L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
25 | Um J H, Yu S H. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques[J]. Advanced Energy Materials, 2021, 11(27): 2003004. |
26 | Zhang R, Shen X, Zhang Y T, et al. Dead lithium formation in lithium metal batteries: a phase field model[J]. Journal of Energy Chemistry, 2022, 71: 29-35. |
27 | Chen X R, Yan C, Ding J F, et al. New insights into “dead lithium” during stripping in lithium metal batteries[J]. Journal of Energy Chemistry, 2021, 62: 289-294. |
28 | Zhang L Q, Yang T T, Du C C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. |
29 | Jana A, García R E. Lithium dendrite growth mechanisms in liquid electrolytes[J]. Nano Energy, 2017, 41: 552-565. |
30 | Jana A, Woo S I, Vikrant K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607. |
31 | Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3: 227-235. |
32 | Li G X, Liu S P, Liu Z, et al. High interfacial-energy and lithiophilic Janus interphase enables stable lithium metal anodes[J]. Small, 2021, 17(36): e2102196. |
33 | Shi S Q, Lu P, Liu Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
34 | Kim S P, van Duin A C T, Shenoy V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20): 8590-8597. |
35 | Aurbach D, Zinigrad E, Cohen Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3/4): 405-416. |
36 | Aurbach D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. |
37 | Fong R, von Sacken U, Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. Journal of the Electrochemical Society, 1990, 137(7): 2009. |
38 | Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206-218. |
39 | Cohen Y S, Cohen Y, Aurbach D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy[J]. The Journal of Physical Chemistry B, 2000, 104(51): 12282-12291. |
40 | Gao Y, Du X Q, Hou Z, et al. Unraveling the mechanical origin of stable solid electrolyte interphase[J]. Joule, 2021, 5(7): 1860-1872. |
41 | Liu Y Y, Lin D C, Yuen P Y, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes[J]. Advanced Materials, 2017, 29(10): 1605531. |
42 | Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
43 | Gofer Y, Ben-Zion M, Aurbach D. Solutions of LiAsF6 in 1, 3-dioxolane for secondary lithium batteries[J]. Journal of Power Sources, 1992, 39(2): 163-178. |
44 | Minghao H, Yueda W, Qian H, et al. Theoretical calculation and computational simulation on electrolyte for lithium metal battery[J]. Progress in Chemistry, 2023, 35(12): 1847. |
45 | Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 1903645. |
46 | Xie Y X, Huang Y X, Zhang Y G, et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes[J]. Nature Communications, 2023, 14(1): 2883. |
47 | Fang C C, Lu B Y, Pawar G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6: 987-994. |
48 | Shen X, Zhang R, Shi P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
49 | Kim H, Lee S H, Kim J M, et al. High-energy-density, long-life Li-metal batteries via application of external pressure[J]. ACS Energy Letters, 2023, 8(7): 2970-2978. |
50 | Ding S C, Fairgrieve-Park L, Sendetskyi O, et al. Compressive creep deformation of lithium foil at varied cell conditions[J]. Journal of Power Sources, 2021, 488: 229404. |
51 | Liu D Y, Wu B B, Xu Y B, et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes[J]. Nature Energy, 2024, 9: 559-569. |
52 | Li R H, Li W, Singh A, et al. Effect of external pressure and internal stress on battery performance and lifespan[J]. Energy Storage Materials, 2022, 52: 395-429. |
53 | Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013, 3: 2261. |
54 | Kodama M, Komiyama S, Ohashi A, et al. High-pressure in situ X-ray computed tomography and numerical simulation of sulfide solid electrolyte[J]. Journal of Power Sources, 2020, 462: 228160. |
55 | Wang H, Yu M, Wang Y, et al. In-situ investigation of pressure effect on structural evolution and conductivity of Na3SbS4 superionic conductor[J]. Journal of Power Sources, 2018, 401: 111-116. |
56 | Doux J M, Nguyen H, Tan D H S, et al. Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(1): 1903253. |
57 | Doux J M, Yang Y, Tan D H S, et al. Pressure effects on sulfide electrolytes for all solid-state batteries[J]. Journal of Materials Chemistry A, 2020, 8(10): 5049-5055. |
58 | Wang R H, Cui W S, Chu F L, et al. Lithium metal anodes: present and future[J]. Journal of Energy Chemistry, 2020, 48: 145-159. |
59 | Tian H K, Liu Z, Ji Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chemistry of Materials, 2019, 31(18): 7351-7359. |
60 | Barai P, Higa K, Srinivasan V. Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study[J]. Journal of the Electrochemical Society, 2016, 164(2): A180-A189. |
61 | 周静颖, 胡晨吉, 郜一蓉, 等. 全固态电池的研究进展与挑战: 以表征技术和理论机制的突破推动全固态电池的原始创新[J]. 中国科学基金, 2023, 37(2): 199-208. |
Zhou J Y, Hu C J, Gao Y R, et al. The current status and challenges of all-solid-state batteries: characterization techniques and mechanistic understandings drive battery innovations[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 199-208. | |
62 | Shi P, Zhang X Q, Shen X, et al. A pressure self-adaptable route for uniform lithium plating and stripping in composite anode[J]. Advanced Functional Materials, 2021, 31(5): 2004189. |
63 | Zheng F, Kotobuki M, Song S F, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213. |
64 | Fergus J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. |
65 | Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540. |
66 | Stramare S, Thangadurai V, Weppner W. Lithium lanthanum titanates: a review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990. |
67 | Knauth P. Inorganic solid Li ion conductors: an overview[J]. Solid State Ionics, 2009, 180(14/15/16): 911-916. |
68 | Oudenhoven J F M, Baggetto L, Notten P H L. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts[J]. Advanced Energy Materials, 2011, 1(1): 10-33. |
69 | Zhang X, Wang Q J, Harrison K L, et al. Pressure-driven interface evolution in solid-state lithium metal batteries[J]. Cell Reports Physical Science, 2020, 1(2): 100012. |
70 | Kazyak E, Garcia-Mendez R, LePage W S, et al. Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility[J]. Matter, 2020, 2(4): 1025-1048. |
71 | Narayan S, Anand L. A large deformation elastic-viscoplastic model for lithium[J]. Extreme Mechanics Letters, 2018, 24: 21-29. |
[1] | Runlong LI, Tong XU, Fei CHEN, Chengwei MA. Lithium metal anode interface thermal distribution evolution mechanism [J]. CIESC Journal, 2024, 75(6): 2322-2331. |
[2] | Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings [J]. CIESC Journal, 2022, 73(8): 3501-3510. |
[3] | Shanshan FENG, Xiaobin LIU, Shilin GUO, Bingbing HE, Zhenguo GAO, Mingyang CHEN, Junbo GONG. Nucleation, growth and inhibition of lithium dendrites [J]. CIESC Journal, 2022, 73(1): 97-109. |
[4] | Rui ZHANG, Xin SHEN, Hong YUAN, Xinbing CHENG, Jiaqi HUANG, Qiang ZHANG. Recent progress on lithium plating/stripping mechanisms in lithium metal batteries [J]. CIESC Journal, 2021, 72(12): 6144-6160. |
[5] | Rui ZHANG, Xin SHEN, Jinfu WANG, Qiang ZHANG. Plating of Li ions in 3D structured lithium metal anodes [J]. CIESC Journal, 2020, 71(6): 2688-2695. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 497
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 239
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||