CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2688-2695.DOI: 10.11949/0438-1157.20200120
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Rui ZHANG(),Xin SHEN,Jinfu WANG,Qiang ZHANG()
Received:
2020-02-07
Revised:
2020-04-01
Online:
2020-06-05
Published:
2020-06-05
Contact:
Qiang ZHANG
通讯作者:
张强
作者简介:
张睿(1993—),男,博士研究生,基金资助:
CLC Number:
Rui ZHANG, Xin SHEN, Jinfu WANG, Qiang ZHANG. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695.
张睿, 沈馨, 王金福, 张强. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695.
参数符号 | 参数名称 | 值 | 单位 |
---|---|---|---|
Lσ | 界面迁移系数 | 1.0×10-8 | m3·J-1·s-1 |
Lη | 电化学反应系数 | 0.2 | s-1 |
κ0 | 相场梯度能量系数 | 5.0×10-5 | J·m-1 |
δ | 各向异性系数 | 0.03 | 无量纲 |
α | 电荷转移系数 | 0.5 | 无量纲 |
c0 | 电解液体相锂离子浓度 | 1.0×103 | mol·m-3 |
cs | 锂金属锂原子浓度 | 7.69×104 | mol·m-3 |
W | 固液相平衡势垒 | 1.2×107 | J·m-3 |
D+l | 电解液相扩散系数 | 6.0×10-12 | m2·s-1 |
D+s | 金属锂相扩散系数 | 1.0×10-15 | m2·s-1 |
σl | 电解液相电导率 | 1.0 | S·m-1 |
σs | 金属锂相电导率 | 1.0×107 | S·m-1 |
φs0 | 电化学反应固相电势 | -0.1 | V |
Table 1 Parameters in phase field model
参数符号 | 参数名称 | 值 | 单位 |
---|---|---|---|
Lσ | 界面迁移系数 | 1.0×10-8 | m3·J-1·s-1 |
Lη | 电化学反应系数 | 0.2 | s-1 |
κ0 | 相场梯度能量系数 | 5.0×10-5 | J·m-1 |
δ | 各向异性系数 | 0.03 | 无量纲 |
α | 电荷转移系数 | 0.5 | 无量纲 |
c0 | 电解液体相锂离子浓度 | 1.0×103 | mol·m-3 |
cs | 锂金属锂原子浓度 | 7.69×104 | mol·m-3 |
W | 固液相平衡势垒 | 1.2×107 | J·m-3 |
D+l | 电解液相扩散系数 | 6.0×10-12 | m2·s-1 |
D+s | 金属锂相扩散系数 | 1.0×10-15 | m2·s-1 |
σl | 电解液相电导率 | 1.0 | S·m-1 |
σs | 金属锂相电导率 | 1.0×107 | S·m-1 |
φs0 | 电化学反应固相电势 | -0.1 | V |
1 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chem. Rev., 2017, 117(15): 10403-10473. |
2 | Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186. |
3 | Liang Y, Zhao C Z, Yuan H, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat, 2019, 1(1): 6-32. |
4 | Yang C, Chen J, Ji X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite[J]. Nature, 2019, 569(7755): 245-250. |
5 | Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5301-5305. |
6 | Zhang X Q, Chen X, Xu R, et al. Columnar lithium metal anodes[J]. Angew. Chem. Int. Ed., 2017, 56(45): 14207-14211. |
7 | Zhang X Q, Zhao C Z, Huang J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847. |
8 | Dai J, Yang C, Wang C, et al. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization[J]. Adv. Mater., 2018, 30: 1802068. |
9 | Wan J Y, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat. Nanotechnol., 2019, 14(7): 705-711. |
10 | Zhao Q, Liu X, Stalin S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nat. Energy, 2019, 4(5): 365-373. |
11 | Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Sci. Adv., 2018, 4(11): eaat3446. |
12 | Cheng X B, Zhao C Z, Yao Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74-96. |
13 | Zhao Y, Ye Y, Wu F, et al. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries[J]. Adv. Mater., 2019, 31(12): 1806532. |
14 | Yan C, Cheng X B, Yao Y X, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Adv. Mater., 2018, 30(45): 1804461. |
15 | Xu R, Cheng X B, Yan C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
16 | Chen L, Fan X, Ji X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744. |
17 | Ye H, Zheng Z J, Yao H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angew. Chem. Int. Ed., 2019, 58(4): 1094-1099. |
18 | Li B Q, Chen X R, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes[J]. Research, 2019, 2019: 4608940. |
19 | Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Sci. Adv., 2019, 5(2): eaau7728. |
20 | Sun C, Li Y, Jin J, et al. ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries[J]. J. Mater. Chem. A, 2019, 7(13): 7752-7759. |
21 | Shen X, Cheng X B, Shi P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. J. Energy Chem., 2019, 37: 29-34. |
22 | Fan Y, Wang T, Legut D, et al. Theoretical investigation of lithium ions nucleation performance on metal-doped Cu surfaces[J]. J. Energy Chem., 2019, 39: 160-169. |
23 | Hong B, Fan H, Cheng X B, et al. Spatially uniform deposition of lithium metal in 3D Janus hosts[J]. Energy Storage Mater., 2019, 16: 259-266. |
24 | Wu H, Zhang Y, Deng Y, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Sci. China Mater., 2019, 62(1): 87-94. |
25 | Chen X R, Zhang R, Cheng X B, et al. Dendrite-free carbon/lithium metal anodes for use in flexible lithium metal batteries[J]. New Carbon Mater., 2017, 32(6): 600-604. |
26 | Zhao C, Yu C, Li S, et al. Ultrahigh-capacity and long-life lithium-metal batteries enabled by engineering carbon nanofiber-stabilized graphene aerogel film host[J]. Small, 2018, 14(42): 1803310. |
27 | Zhao C, Wang Z, Tan X, et al. Implanting CNT forest onto carbon nanosheets as multifunctional hosts for high-performance lithium metal batteries[J]. Small Methods, 2019, 3(5): 1800546. |
28 | Duan H, Zhang J, Chen X, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. J. Am. Chem. Soc., 2018, 140(51): 18051-18057. |
29 | Xu B Q, Zhai H W, Liao X B, et al. Porous insulating matrix for lithium metal anode with long cycling stability and high power[J]. Energy Storage Mater., 2019, 17: 31-37. |
30 | Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Adv. Mater., 2016, 28(15): 2888-2895. |
31 | Xu X, Wang S, Wang H, et al. Recent progresses in the suppression method based on the growth mechanism of lithium dendrite[J]. J. Energy Chem., 2018, 27(2): 513-527. |
32 | Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nat. Nanotechnol., 2019, 14(6): 594-601. |
33 | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. |
34 | Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Adv. Mater., 2019, 31(8): 1807131. |
35 | Niu C, Lee H, Chen S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nat. Energy, 2019, 4(7): 551-559. |
36 | Cheng X B, Zhang Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Prog. Chem., 2018, 30(1): 51-72. |
37 | Kong L, Zhang Q. Three-dimensional matrix for lithium metal anode for next-generation rechargeable batteries: structure design and interface engineering[J]. J. Energy Chem., 2019, 33: 167-168. |
38 | Ni S, Tan S, An Q, et al. Three dimensional porous frameworks for lithium dendrite suppression[J]. J. Energy Chem., 2020, 44: 73-89. |
39 | Liu H, Cheng X B, Jin Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): 100003. |
40 | 宋刘斌, 黎安娴, 肖忠良, 等. 第一性原理在锂离子电池电极材料中的应用研究[J]. 化工学报, 2019, 70(6): 2051-2059. |
Song L B, Li A X, Xiao Z L, et al. Application research status of first-principles in lithium-ion battery electrode materials[J]. CIESC Journal, 2019, 70(6): 2051-2059. | |
41 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅱ): Kinetics[J]. Phys. Rev. E, 2004, 69(2): 021604. |
42 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅰ): Equilibrium[J]. Phys. Rev. E, 2004, 69(2): 021603. |
43 | Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?[J]. Energy Storage Mater., 2019, 23: 556-565. |
44 | Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. J. Power Sources, 2015, 300: 376-385. |
45 | Tian H K, Liu Z, Ji Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chem. Mater., 2019, 31(18): 7351-7359. |
46 | Foroozan T, Soto F A, Yurkiv V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Adv. Funct. Mater., 2018: 28(15): 1705917.1-1705917.13. |
47 | Smith R B, Bazant M Z. Multiphase porous electrode theory[J]. J. Electrochem. Soc., 2017, 164(11): E3291-E3310. |
48 | Liang L, Qi Y, Xue F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Phys. Rev. E, 2012, 86(5): 051609. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[10] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[11] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[12] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[13] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 666
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 580
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||