CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6144-6160.DOI: 10.11949/0438-1157.20211242
• Reviews and monographs • Previous Articles Next Articles
Rui ZHANG1,2(),Xin SHEN2,Hong YUAN1,Xinbing CHENG2,Jiaqi HUANG1,Qiang ZHANG2()
Received:
2021-08-26
Revised:
2021-11-02
Online:
2021-12-22
Published:
2021-12-05
Contact:
Qiang ZHANG
张睿1,2(),沈馨2,袁洪1,程新兵2,黄佳琦1,张强2()
通讯作者:
张强
作者简介:
张睿(1993—),男,博士,基金资助:
CLC Number:
Rui ZHANG, Xin SHEN, Hong YUAN, Xinbing CHENG, Jiaqi HUANG, Qiang ZHANG. Recent progress on lithium plating/stripping mechanisms in lithium metal batteries[J]. CIESC Journal, 2021, 72(12): 6144-6160.
张睿, 沈馨, 袁洪, 程新兵, 黄佳琦, 张强. 二次电池中金属锂负极沉脱机理研究进展[J]. 化工学报, 2021, 72(12): 6144-6160.
Add to citation manager EndNote|Ris|BibTeX
1 | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
3 | Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. |
4 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
5 | Liu J, Bao Z N, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
6 | Chen X R, Zhao B C, Yan C, et al. Review on Li deposition in working batteries: from nucleation to early growth[J]. Advanced Materials, 2021, 33(8): 2004128. |
7 | Cheng X B, Liu H, Yuan H, et al. A perspective on sustainable energy materials for lithium batteries[J]. SusMat, 2021, 1(1): 38-50. |
8 | Wang R H, Cui W S, Chu F L, et al. Lithium metal anodes: present and future[J]. Journal of Energy Chemistry, 2020, 48: 145-159. |
9 | Chen X, Li H R, Shen X, et al. The origin of the reduced reductive stability of ion-solvent complexes on alkali and alkaline earth metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(51): 16643-16647. |
10 | Zhang X Q, Jin Q, Nan Y L, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2021, 60(28): 15503-15509. |
11 | Wan C, Xu S, Hu M Y, et al. Multinuclear NMR study of the solid electrolyte interface formed in lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14741-14748. |
12 | Vaughey J T, Liu G, Zhang J G. Stabilizing the surface of lithium metal[J]. MRS Bulletin, 2014, 39(5): 429-435. |
13 | Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
14 | Wang A P, Kadam S, Li H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. Npj Computational Materials, 2018, 4: 15. |
15 | Yang Y, Yan C, Huang J Q. Research progress of solid electrolyte interphase in lithium batteries[J]. Acta Physico Chimica Sinica, 2021, 37(11): 2010076. |
16 | Yu X W, Manthiram A. Electrode-electrolyte interfaces in lithium-based batteries[J]. Energy & Environmental Science, 2018, 11(3): 527-543. |
17 | Li Y Z, Huang W, Li Y B, et al. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177. |
18 | Shi S, Lu P, Liu Z, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
19 | Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210. |
20 | Yan C, Cheng X B, Yao Y X, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Advanced Materials, 2018, 30(45): 1804461. |
21 | Xu R, Shen X, Ma X X, et al. Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface[J]. Angewandte Chemie International Edition, 2021, 60(8): 4215-4220. |
22 | He Y, Ren X D, Xu Y B, et al. Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14(11): 1042-1047. |
23 | Zachman M J, Tu Z Y, Choudhury S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
24 | Biswal P, Stalin S, Kludze A, et al. Nucleation and early stage growth of Li electrodeposits[J]. Nano Letters, 2019, 19(11): 8191-8200. |
25 | Sun X W, Zhang X Y, Ma Q T, et al. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(17): 6665-6674. |
26 | Shen C, Hu G H, Cheong L Z, et al. Direct observation of the growth of lithium dendrites on graphite anodes by operando EC-AFM[J]. Small Methods, 2018, 2(2): 1700298. |
27 | Li L, Li S, Lu Y. Suppression of dendritic lithium growth in lithium metal-based batteries[J]. Chemical Communications, 2018, 54(50): 6648-6661. |
28 | Liu H, Cheng X B, Jin Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): 100003. |
29 | Pu K C, Zhang X, Qu X L, et al. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries[J]. Rare Metals, 2020, 39(6): 616-635. |
30 | 沈馨, 张睿, 程新兵, 等. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. |
Shen X, Zhang R, Cheng X B, et al. Recent progress on in situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. | |
31 | Tikekar M D, Choudhury S, Tu Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1(9): 1-7. |
32 | Fan H L, Gao C H, Jiang H, et al. A systematical study on the electrodeposition process of metallic lithium[J]. Journal of Energy Chemistry, 2020, 49: 59-70. |
33 | Li N, Ye Q, Zhang K, et al. Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2019, 58(50): 18246-18251. |
34 | Shi F F, Pei A, Boyle D T, et al. Lithium metal stripping beneath the solid electrolyte interphase[J]. PNAS, 2018, 115(34): 8529-8534. |
35 | Huang F Y, Wang S, Jie Y L, et al. Deciphering pitting behavior of lithium metal anodes in lithium sulfur batteries[J]. Journal of Energy Chemistry, 2020, 49: 257-261. |
36 | Liu H, Cheng X B, Xu R, et al. Plating/stripping behavior of actual lithium metal anode[J]. Advanced Energy Materials, 2019, 9(44): 1902254. |
37 | Fang C C, Li J X, Zhang M H, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. |
38 | Aryanfar A, Brooks D J, Colussi A J, et al. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries[J]. Phys. Chem. Chem. Phys., 2014, 16(45): 24965-24970. |
39 | Chen K H, Wood K N, Kazyak E, et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A, 2017, 5(23): 11671-11681. |
40 | Wood K N, Kazyak E, Chadwick A F, et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy[J]. ACS Cent. Sci., 2016, 2(11): 790-801. |
41 | Shi P, Cheng X B, Li T, et al. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells[J]. Advanced Materials, 2019, 31(37): 1902785. |
42 | Xia S X, Lopez J, Liang C, et al. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte[J]. Advanced Science, 2019, 6(9): 1802353. |
43 | Cai W, Yao Y X, Zhu G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833. |
44 | Han Y Y, Liu B, Xiao Z, et al. Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives[J]. InfoMat, 2021, 3(2): 155-174. |
45 | Yan C, Zhang X Q, Huang J Q, et al. Lithium-anode protection in lithium-sulfur batteries[J]. Trends in Chemistry, 2019, 1(7): 693-704. |
46 | Yan C, Xu R, Qin J L, et al. 4.5 V high-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode[J]. Angewandte Chemie International Edition, 2019, 58(43): 15235-15238. |
47 | Shen X, Liu H, Cheng X B, et al. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. |
48 | Li L Y, Chen C G, Yu A S. New electrochemical energy storage systems based on metallic lithium anode-the research status, problems and challenges of lithium-sulfur, lithium-oxygen and all solid state batteries[J]. Science China Chemistry, 2017, 60(11): 1402-1412. |
49 | Adams B D, Zheng J M, Ren X D, et al. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(7): 1702097. |
50 | Lin D, Liu Y, Li Y, et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism[J]. Nature Chemistry, 2019, 11(4): 382-389. |
51 | Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889. |
52 | Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367. |
53 | Monroe C, Newman J. Dendrite growth in lithium/polymer systems[J]. Journal of the Electrochemical Society, 2003, 150(10): A1377. |
54 | Akolkar R. Mathematical model of the dendritic growth during lithium electrodeposition[J]. Journal of Power Sources, 2013, 232: 23-28. |
55 | Akolkar R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature[J]. Journal of Power Sources, 2014, 246: 84-89. |
56 | Aryanfar A, Brooks D, Merinov B V, et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726. |
57 | Liang Z, Yan K, Zhou G, et al. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation[J]. Science Advances, 2019, 5(3): eaau5655. |
58 | 林振康, 乔耀璇, 王伟, 等. 基于非线性动力学的锂沉积形貌模拟与预测[J]. 化工学报, 2020, 71(9): 4228-4237. |
Lin Z K, Qiao Y X, Wang W, et al. Morphology prediction of lithium plating by finite element modeling and simulations based on non-linear kinetics [J]. CIESC Journal, 2020, 71(9): 4228-4237. | |
59 | Shen X, Zhang R, Chen X, et al. Solid electrolyte interphase: the failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 2070045. |
60 | Xu B Q, Liu Z, Li J X, et al. Engineering interfacial adhesion for high-performance lithium metal anode[J]. Nano Energy, 2020, 67: 104242. |
61 | Li G X, Liu Z, Wang D W, et al. Electrokinetic phenomena enhanced lithium-ion transport in leaky film for stable lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(22): 1900704. |
62 | Bazant M Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics[J]. Accounts of Chemical Research, 2013, 46(5): 1144-1160. |
63 | Nadkarni N, Zhou T T, Fraggedakis D, et al. Modeling the metal-insulator phase transition in LixCoO2 for energy and information storage[J]. Advanced Functional Materials, 2019, 29(40): 1902821. |
64 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695. |
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes [J]. CIESC Journal, 2020, 71(6): 2688-2695. | |
65 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(I): Equilibrium[J]. Physical Review E, 2004, 69(2): 021603. |
66 | Guyer J E, Boettinger W J, Warren J A, et al. Phase field modeling of electrochemistry(Ⅱ): Kinetics[J]. Physical Review E, 2004, 69(2): 021604. |
67 | Shibuta Y, Okajima Y, Suzuki T. Phase-field modeling for electrodeposition process[J]. Science and Technology of Advanced Materials, 2007, 8(6): 511-518. |
68 | Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. |
69 | Tian H K, Liu Z, Ji Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chemistry of Materials, 2019, 31(18): 7351-7359. |
70 | Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? [J]. Energy Storage Materials, 2019, 23: 556-565. |
71 | Shen X, Zhang R, Shi P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): 2003416. |
72 | Jana A, Woo S I, Vikrant K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607. |
73 | Liu H, Cheng X B, Zhang R, et al. Mesoporous graphene hosts for dendrite-free lithium metal anode in working rechargeable batteries[J]. Transactions of Tianjin University, 2020, 26(2): 127-134. |
74 | Cheng X B, Peng H J, Huang J Q, et al. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries[J]. ACS Nano, 2015, 9(6): 6373-6382. |
75 | Mao H, Yu W, Cai Z Y, et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(35): 19306-19313. |
76 | Hong B, Fan H L, Cheng X B, et al. Spatially uniform deposition of lithium metal in 3D Janus hosts[J]. Energy Storage Materials, 2019, 16: 259-266. |
77 | Chen X R, Li B Q, Zhu C, et al. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(39): 1901932. |
78 | Wang J Y, Cui Y, Wang D. Design of hollow nanostructures for energy storage, conversion and production[J]. Advanced Materials, 2019, 31(38): 1801993. |
79 | Xie H Y, Hao Q, Jin H C, et al. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board[J]. Science China Chemistry, 2020, 63(9): 1306-1314. |
80 | Shi H D, Qin J Q, Huang K, et al. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2020, 59(29): 12147-12153. |
81 | Liu J, Yuan H, Tao X Y, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat, 2020, 2(1): e12019. |
82 | Du Y, Gao X, Li S W, et al. Recent advances in metal-organic frameworks for lithium metal anode protection[J]. Chinese Chemical Letters, 2020, 31(3): 609-616. |
83 | Liu J, Yuan H, Cheng X B, et al. A review of naturally derived nanostructured materials for safe lithium metal batteries[J]. Materials Today Nano, 2019, 8: 100049. |
84 | Chen L, Fan X L, Ji X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744. |
85 | Lin D, Zhao J, Sun J, et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4613-4618. |
86 | Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014, 10(21): 4257-4263. |
87 | Liu L, Yin Y X, Li J Y, et al. Ladderlike carbon nanoarrays on 3D conducting skeletons enable uniform lithium nucleation for stable lithium metal anodes[J]. Chemical Communications, 2018, 54(42): 5330-5333. |
88 | Lu S T, Wang Z D, Yan H, et al. High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam[J]. Journal of Energy Chemistry, 2020, 41: 87-92. |
89 | He D Q, Liao Y Q, Cheng Z X, et al. Facile one-step vulcanization of copper foil towards stable Li metal anode[J]. Science China Materials, 2020, 63(9): 1663-1671. |
90 | Gu Y, Xu H Y, Zhang X G, et al. Lithiophilic faceted Cu(100) surfaces: high utilization of host surface and cavities for lithium metal anodes[J]. Angewandte Chemie International Edition, 2019, 58(10): 3092-3096. |
91 | Cheng X B, Hou T Z, Zhang R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895. |
92 | Zhang W, Zhuang H L, Fan L, et al. A“cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries[J]. Science Advances, 2018, 4(2): eaar4410. |
93 | Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances, 2019, 5(2): eaau7728. |
94 | Li B Q, Chen X R, Chen X, et al. Favorable lithium nucleation on lithiophilic framework porphyrin for dendrite-free lithium metal anodes[J]. Research, 2019, 2019: 4608940. |
95 | Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11): 2155-2162. |
96 | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. |
97 | Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768. |
98 | Song Y W, Shi P, Li B Q, et al. Covalent organic frameworks construct precise lithiophilic sites for uniform lithium deposition[J]. Matter, 2021, 4(1): 253-264. |
99 | Chen X, Bai Y K, Shen X, et al. Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes[J]. Journal of Energy Chemistry, 2020, 51: 1-6. |
100 | Chen X R, Chen X, Yan C, et al. Role of lithiophilic metal sites in lithium metal anodes[J]. Energy & Fuels, 2021, 35(15): 12746-12752. |
101 | Wang S H, Yin Y X, Zuo T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): 1703729. |
102 | Xie J, Wang J Y, Lee H R, et al. Engineering stable interfaces for three-dimensional lithium metal anodes[J]. Science Advances, 2018, 4(7): eaat5168. |
103 | Wang C W, Gong Y H, Liu B Y, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571. |
104 | Zhang Y, Luo W, Wang C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. PNAS, 2017, 114(14): 3584-3589. |
105 | Li T, Shi P, Zhang R, et al. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior[J]. Nano Research, 2019, 12(9): 2224-2229. |
106 | Shen X, Cheng X B, Shi P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. Journal of Energy Chemistry, 2019, 37: 29-34. |
107 | Yang C P, Xie H, Ping W W, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries[J]. Advanced Materials, 2019, 31(3): 1804815. |
108 | Ye H, Zheng Z J, Yao H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(4): 1094-1099. |
109 | Zeng S B, Arumugam G M, Li W T, et al. Robust interface layers with redox shuttle reactions suppress the dendrite growth for stable solid-state Li metal batteries[J]. Journal of Energy Chemistry, 2020, 51: 222-229. |
110 | Wu K, Zhao B L, Yang C K, et al. ZnCo2O4/ZnO induced lithium deposition in multi-scaled carbon/nickel frameworks for dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2020, 43: 16-23. |
111 | 王成林, 屈思吉, 李晶泽. 锂合金薄膜层保护金属锂负极的机理[J]. 储能科学与技术, 2020, 9(2): 368-374. |
Wang C L, Qu S J, Li J Z. Protective mechanism of the Li alloy film-buffered Li metal anode[J]. Energy Storage Science and Technology, 2020, 9(2): 368-374. | |
112 | Liu H, Cheng X B, Huang J Q, et al. Alloy anodes for rechargeable alkali-metal batteries: progress and challenge[J]. ACS Materials Letters, 2019, 1(2): 217-229. |
113 | Liang X, Pang Q, Kochetkov I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2(9): 1-7. |
114 | Guo F H, Wu C, Chen H, et al. Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode[J]. Energy Storage Materials, 2020, 24: 635-643. |
115 | Chang J, Shang J, Sun Y M, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9: 4480. |
116 | Liu K, Kong B, Liu W, et al. Stretchable lithium metal anode with improved mechanical and electrochemical cycling stability[J]. Joule, 2018, 2(9): 1857-1865. |
117 | Li T, Liu H, Shi P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Metals, 2018, 37(6): 449-458. |
118 | Wang S J, Xiong P, Zhang J Q, et al. Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes[J]. Energy Storage Materials, 2020, 29: 310-331. |
119 | Zhan Y X, Shi P, Zhang R, et al. Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(37): 2101654. |
120 | Fan L, Li S Y, Liu L, et al. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase[J]. Advanced Energy Materials, 2018, 8(33): 1802350. |
121 | Yang C P, Zhang L, Liu B Y, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework[J]. PNAS, 2018, 115(15): 3770-3775. |
122 | Wang H S, Lin D C, Xie J, et al. An interconnected channel-like framework as host for lithium metal composite anodes[J]. Advanced Energy Materials, 2019, 9(7): 1802720. |
123 | Zhang R, Li N W, Cheng X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): 1600445. |
124 | Zhan Y, Shi P, Zhang X, et al. Recent progress of lithiophilic host for lithium metal anode[J]. Chemical Journal of Chinese Universities, 2021, 42: 1569-1580. |
125 | Kong L, Tang C, Peng H J, et al. Advanced energy materials for flexible batteries in energy storage: a review[J]. SmartMat, 2020, 1(1): e1007. |
126 | Zhang X Q, Cheng X B, Zhang Q. Advances in interfaces between Li metal anode and electrolyte[J]. Advanced Materials Interfaces, 2018, 5(2): 1701097. |
127 | Wang X S, Mai W C, Guan X C, et al. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques[J]. Energy & Environmental Materials, 2021, 4(3): 284-292. |
128 | Ding J F, Xu R, Yan C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319. |
129 | Yang H C, Li J, Sun Z H, et al. Reliable liquid electrolytes for lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 113-129. |
130 | Chen W J, Li B Q, Zhao C X, et al. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes[J]. Angewandte Chemie International Edition, 2020, 59(27): 10732-10745. |
131 | 冯建文, 胡时光, 韩兵, 等. 锂金属电池电解液组分调控的研究进展[J]. 储能科学与技术, 2020, 9(6): 1629-1640. |
Feng J W, Hu S G, Han B, et al. Research progress of electrolyte optimization for lithium metal batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. | |
132 | Jiao S H, Ren X D, Cao R G, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. |
133 | Li X, Zheng J M, Ren X D, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives[J]. Advanced Energy Materials, 2018, 8(15): 1703022. |
134 | Wang Z X, Sun C G, Shi Y, et al. A salt-derived solid electrolyte interphase by electroreduction of water-in-salt electrolyte for uniform lithium deposition[J]. Journal of Power Sources, 2019, 439: 227073. |
135 | Li F, He J, Liu J D, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(12): 6600-6608. |
136 | Zhang X Q, Li T, Li B Q, et al. A sustainable solid electrolyte interphase for high-energy-density lithium metal batteries under practical conditions[J]. Angewandte Chemie International Edition, 2020, 59(8): 3252-3257. |
137 | Li S Y, Zhang W D, Wu Q, et al. Synergistic dual-additive electrolyte enables practical lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(35): 14935-14941. |
138 | Jie Y L, Liu X J, Lei Z W, et al. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(9): 3505-3510. |
139 | Hou L P, Zhang X Q, Li B Q, et al. Cycling a lithium metal anode at 90℃ in a liquid electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(35): 15109-15113. |
140 | Chen W J, Zhao C X, Li B Q, et al. A mixed ether electrolyte for lithium metal anode protection in working lithium-sulfur batteries[J]. Energy & Environmental Materials, 2020, 3(2): 160-165. |
141 | Zhang X Q, Zhao C Z, Huang J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847. |
142 | Zhang X Q, Chen X, Xu R, et al. Columnar lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(45): 14207-14211. |
143 | Fan X L, Chen L, Ji X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174-185. |
144 | Ren X D, Zou L F, Jiao S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. |
145 | Zhu G L, Zhao C Z, Yuan H, et al. Liquid phase therapy with localized high-concentration electrolytes for solid-state Li metal pouch cells[J]. Acta Physico Chimica Sinica, 2020: 2005003. |
146 | Chen S R, Zheng J M, Mei D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): 1706102. |
147 | Yamada Y, Wang J H, Ko S, et al. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nature Energy, 2019, 4(4): 269-280. |
148 | Yan C, Yao Y X, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2018, 57(43): 14055-14059. |
149 | Liu Y Y, Lin D C, Li Y Z, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9: 3656. |
150 | Fu J L, Ji X, Chen J, et al. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(49): 22194-22201. |
151 | Zheng J M, Engelhard M H, Mei D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 1-8. |
152 | Cheng X B, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270. |
153 | Cheng X B, Yan C, Peng H J, et al. Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes[J]. Energy Storage Materials, 2018, 10: 199-205. |
154 | Wei J Y, Zhang X Q, Hou L P, et al. Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(37): 2003012. |
155 | Chen J X, Zhang X Q, Li B Q, et al. The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes[J]. Journal of Energy Chemistry, 2020, 47: 128-131. |
156 | Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie International Edition, 2018, 57(19): 5301-5305. |
157 | Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): 1605989. |
158 | Zhang M S, Liu R J, Wang Z K, et al. Electrolyte additive maintains high performance for dendrite-free lithium metal anode[J]. Chinese Chemical Letters, 2020, 31(5): 1217-1220. |
159 | Ren X D, Zhang Y H, Engelhard M H, et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Letters, 2018, 3(1): 14-19. |
160 | Li N W, Yin Y X, Li J Y, et al. Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping[J]. Advanced Science, 2017, 4(2): 1600400. |
161 | Qi S H, Wang H P, He J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7): 685-693. |
162 | Xu H W, He Y, Zhang Z B, et al. Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2020, 48: 375-382. |
163 | Liu J R, Wang Y L, Liu F M, et al. Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte[J]. Journal of Energy Chemistry, 2020, 42: 1-4. |
164 | Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: 16103. |
165 | Zhao Q, Stalin S, Zhao C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5(3): 229-252. |
166 | Lu Y, Zhao C Z, Yuan H, et al. Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925. |
167 | Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Advanced Energy Materials, 2021: 2100748. |
168 | 南皓雄, 赵辰孜, 袁洪, 等. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70. |
Nan H X, Zhao C Z, Yuan H, et al. Recent advances in solid-state lithium metal batteries: the role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70. | |
169 | Zhao C Z, Chen P Y, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Science Advances, 2018, 4(11): eaat3446. |
170 | Han F D, Yue J, Chen C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508. |
171 | Gao J, Shao Q J, Chen J. Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery[J]. Journal of Energy Chemistry, 2020, 46: 237-247. |
172 | Ding J F, Xu R, Yan C, et al. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2339-2342. |
173 | Li P L, Dong X L, Li C, et al. Anchoring an artificial solid-electrolyte interphase layer on a 3D current collector for high-performance lithium anodes[J]. Angewandte Chemie International Edition, 2019, 58(7): 2093-2097. |
174 | Han F D, Zhu Y Z, He X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590. |
175 | Yao X Y, Huang N, Han F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): 1602923. |
176 | Yao X Y, Liu D, Wang C S, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. |
177 | Wang X L, Xiao R J, Li H, et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics, 2016, 18(31): 21269-21277. |
178 | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
Wu J H, Yao X Y. Recent progress in interfaces of all-solid-state lithium batteries based on sulfide electrolytes[J]. Energy Storage Science and Technology, 2020, 9(2): 501-514. | |
179 | Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. PNAS, 2017, 114(42): 11069-11074. |
180 | Wan J Y, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. |
181 | Shen Y Q, Zeng F L, Zhou X Y, et al. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 48: 267-276. |
182 | Jaumaux P, Liu Q, Zhou D, et al. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(23): 9134-9142. |
183 | Fan W, Li N W, Zhang X L, et al. A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries[J]. Advanced Science, 2018, 5(9): 1800559. |
184 | Liu F Q, Wang W P, Yin Y X, et al. Upgrading traditional liquid electrolyte viain situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): eaat5383. |
185 | Zeng X X, Yin Y X, Shi Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries[J]. Chem, 2018, 4(2): 298-307. |
186 | Lu Y, Huang X, Song Z, et al. Highly stable garnet solid electrolyte based Li-S battery with modified anodic and cathodic interfaces[J]. Energy Storage Materials, 2018, 15: 282-290. |
187 | Xu S M, Duan H, Shi J L, et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes[J]. Nano Research, 2020, 13(2): 430-436. |
188 | Yan C, Jiang L L, Yao Y X, et al. Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries[J]. Angewandte Chemie International Edition, 2021, 60(15): 8521-8525. |
189 | Ding J F, Xu R, Yao N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(20): 11442-11447. |
190 | Zhang Q K, Liu S, Lu Y T, et al. Artificial interphases enable dendrite-free Li-metal anodes[J]. Journal of Energy Chemistry, 2021, 58: 198-206. |
191 | Xu X Q, Xu R, Cheng X B, et al. A two-dimension laminar composite protective layer for dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2021, 56: 391-394. |
192 | Yao Y X, Zhang X Q, Li B Q, et al. A compact inorganic layer for robust anode protection in lithium-sulfur batteries[J]. InfoMat, 2020, 2(2): 379-388. |
193 | Yang Q L, Li W L, Dong C, et al. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries[J]. Journal of Energy Chemistry, 2020, 42: 83-90. |
194 | Wang H T, Tang Y B. Artificial solid electrolyte interphase acting as“armor”to protect the anode materials for high-performance lithium-ion battery[J]. Chemical Research in Chinese Universities, 2020, 36(3): 402-409. |
195 | Tu Y R, Ma Q T, Wang A X, et al. Skin care design for lithium metal protection with cosmetics introduction[J]. Journal of Energy Chemistry, 2020, 48: 383-389. |
196 | Liang Y R, Xiao Y, Yan C, et al. A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes[J]. Journal of Energy Chemistry, 2020, 48: 203-207. |
197 | Zhao C Z, Duan H, Huang J Q, et al. Designing solid-state interfaces on lithium-metal anodes: a review[J]. Science China Chemistry, 2019, 62(10): 1286-1299. |
198 | Gao Z G, Zhang S J, Huang Z G, et al. Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries[J]. Chinese Chemical Letters, 2019, 30(2): 525-528. |
199 | Pang Q, Liang X, Kochetkov I R, et al. Stabilizing lithium plating by a biphasic surface layer formed in situ[J]. Angewandte Chemie International Edition, 2018, 57(31): 9795-9798. |
200 | Xu R, Cheng X B, Yan C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
201 | Xu R, Yan C, Huang J Q. Competitive solid-electrolyte interphase formation on working lithium anodes[J]. Trends in Chemistry, 2021, 3(1): 5-14. |
202 | Xiao Y, Xu R, Yan C, et al. Waterproof lithium metal anode enabled by cross-linking encapsulation[J]. Science Bulletin, 2020, 65(11): 909-916. |
203 | Liu J, Xu R, Yan C, et al. In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries[J]. Energy Storage Materials, 2020, 30: 27-33. |
204 | Xu R, Zhang X Q, Cheng X B, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2018, 28(8): 1705838. |
205 | Zheng G Y, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology, 2014, 9(8): 618-623. |
206 | Li N W, Shi Y, Yin Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509. |
207 | Kim M S, Ryu J H, Deepika, et al. Langmuir-Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries[J]. Nature Energy, 2018, 3(10): 889-898. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[7] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[8] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[9] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[10] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[11] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[12] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[13] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
[14] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[15] | Xun JIAO, Cheng TONG, Cunpu LI, Zidong WEI. Kinetic regulation strategies in lithium-sulfur batteries [J]. CIESC Journal, 2023, 74(1): 170-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||