CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3501-3510.DOI: 10.11949/0438-1157.20220477
• Thermodynamics • Previous Articles Next Articles
Kai HUANG(), Sijie WANG, Haiping SU(), Cheng LIAN, Honglai LIU
Received:
2022-04-06
Revised:
2022-05-24
Online:
2022-09-06
Published:
2022-08-05
Contact:
Haiping SU
通讯作者:
苏海萍
作者简介:
黄凯(1995—),男,博士研究生,y12203017@mail.ecust.edu.cn
基金资助:
CLC Number:
Kai HUANG, Sijie WANG, Haiping SU, Cheng LIAN, Honglai LIU. First principle study on inhibition of lithium dendrites growth by regulating graphene layer spacings[J]. CIESC Journal, 2022, 73(8): 3501-3510.
黄凯, 王思洁, 苏海萍, 练成, 刘洪来. 石墨烯层间距调控抑制锂枝晶生长的第一性原理研究[J]. 化工学报, 2022, 73(8): 3501-3510.
Fig. 1 The schematic diagram of calculation configurations (the gray, pink, blue, purple and green ball represent C, B, N, P and Cl atom, respectively)
Fig. 2 The configuration, difference charge density and Hirshfeld charge of lithium atom adsorbed on different sites of graphene with d = 0.75 nm (red and blue isosurface denote the decrease and increase of electron density, respectively, and the value is ± 0.02 e/Å3)
层间距/nm | 顶位结合能/eV | 桥位结合能/eV | 空位结合能/eV |
---|---|---|---|
0.35 | -0.90 | -1.10 | -1.90 |
0.45 | -1.63 | -1.64 | -1.68 |
0.55 | -1.15 | -1.17 | -1.32 |
0.65 | -0.92 | -0.97 | -1.24 |
0.75 | -0.86 | -0.86 | -1.19 |
Table 1 The binding energy of Li atom at different sites on graphene with different layer spacings
层间距/nm | 顶位结合能/eV | 桥位结合能/eV | 空位结合能/eV |
---|---|---|---|
0.35 | -0.90 | -1.10 | -1.90 |
0.45 | -1.63 | -1.64 | -1.68 |
0.55 | -1.15 | -1.17 | -1.32 |
0.65 | -0.92 | -0.97 | -1.24 |
0.75 | -0.86 | -0.86 | -1.19 |
Fig. 3 The binding energy, charge density and adsorption state of lithium atom on graphene hollow site with different layer spacings (red and blue isosurface denote the decrease and increase of electron density, respectively, and the value is ± 0.02 e/Å3)
掺杂原子 | 扩散活化能/eV | |||||
---|---|---|---|---|---|---|
5.3% | 2.9% | 1.1% | ||||
路径1 | 路径3 | 路径1 | 路径3 | 路径1 | 路径3 | |
B | 0.126 | -0.040 | 0.078 | -0.073 | 0.090 | -0.054 |
N | -0.091 | 0.197 | -0.069 | 0.053 | -0.012 | 0.224 |
P | -0.118 | 0.639 | -0.192 | 0.529 | -0.077 | 0.712 |
Cl | -0.113 | 0.553 | -0.040 | 0.698 | -0.034 | 0.691 |
Table 2 Diffusion activation energy of lithium atom on doped-graphene (path1 and path3) with different doping amount
掺杂原子 | 扩散活化能/eV | |||||
---|---|---|---|---|---|---|
5.3% | 2.9% | 1.1% | ||||
路径1 | 路径3 | 路径1 | 路径3 | 路径1 | 路径3 | |
B | 0.126 | -0.040 | 0.078 | -0.073 | 0.090 | -0.054 |
N | -0.091 | 0.197 | -0.069 | 0.053 | -0.012 | 0.224 |
P | -0.118 | 0.639 | -0.192 | 0.529 | -0.077 | 0.712 |
Cl | -0.113 | 0.553 | -0.040 | 0.698 | -0.034 | 0.691 |
1 | Xu W, Wang J L, Ding F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537. |
2 | Fan X L, Chen L, Borodin O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018, 13(8): 715-722. |
3 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695. |
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695. | |
4 | Tan S J, Yue J P, Hu X C, et al. Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(23): 7802-7807. |
5 | Cheng X B, Yan C, Huang J Q, et al. The gap between long lifespan Li-S coin and pouch cells: the importance of lithium metal anode protection[J]. Energy Storage Materials, 2017, 6: 18-25. |
6 | Wu F, Yuan Y X, Cheng X B, et al. Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes[J]. Energy Storage Materials, 2018, 15: 148-170. |
7 | 丰闪闪, 刘晓斌, 郭石麟, 等. 锂枝晶的成核、生长与抑制[J]. 化工学报, 2022, 73(1): 97-109. |
Feng S S, Liu X B, Guo S L, et al. Nucleation, growth and inhibition of lithium dendrites[J]. CIESC Journal, 2022, 73(1): 97-109. | |
8 | Kang H K, Woo S G, Kim J H, et al. Few-layer graphene island seeding for dendrite-free Li metal electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(40): 26895-26901. |
9 | An Y L, Tian Y, Wei C L, et al. Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries[J]. ACS Nano, 2019, 13(12): 13690-13701. |
10 | Chen X, Shang M W, Niu J J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression[J]. Nano Letters, 2020, 20(4): 2639-2646. |
11 | Cha E, Patel M D, Park J, et al. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries[J]. Nature Nanotechnology, 2018, 13(4): 337-344. |
12 | Nie X, Zhang A Y, Liu Y H, et al. Synthesis of interconnected graphene framework with two-dimensional protective layers for stable lithium metal anodes[J]. Energy Storage Materials, 2019, 17: 341-348. |
13 | Kim J S, Kim D W, Jung H T, et al. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive[J]. Chemistry of Materials, 2015, 27(8): 2780-2787. |
14 | Huang G, Han J H, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials, 2019, 31(2): e1805334. |
15 | Li Z H, Li X L, Zhou L, et al. A collaborative strategy for stable lithium metal anodes by using three-dimensional nitrogen-doped graphene foams[J]. Nanoscale, 2018, 10(10): 4675-4679. |
16 | Lin D C, Liu Y Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology, 2016, 11(7): 626-632. |
17 | Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768. |
18 | Tang Y H, Wang X, Chen J J, et al. PVP-assisted synthesis of g-C3N4-derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes[J]. Carbon, 2021, 174: 98-109. |
19 | Shi H D, Qin J Q, Huang K, et al. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes[J]. Angewandte Chemie, 2020, 132(29): 12245-12251. |
20 | Leggesse E G, Chen C L, Jiang J C. Lithium diffusion in graphene and graphite: effect of edge morphology[J]. Carbon, 2016, 103: 209-216. |
21 | Wasalathilake K C, Ayoko G A, Yan C. Effects of heteroatom doping on the performance of graphene in sodium-ion batteries: a density functional theory investigation[J]. Carbon, 2018, 140: 276-285. |
22 | Chen S Q, Zheng F F, Feng J, et al. Theoretical study on single-side fluorinated graphene for lithium storage[J]. Applied Surface Science, 2021, 560: 150033. |
23 | Wen Y, He K, Zhu Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications, 2014, 5: 4033. |
24 | Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. |
25 | Shen J, Liu G P, Han Y, et al. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nature Reviews Materials, 2021, 6(4): 294-312. |
26 | Vishnugopi B S, Hao F, Verma A, et al. Double-edged effect of temperature on lithium dendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23931-23938. |
27 | Mayers M Z, Kaminski J W, Miller T F III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26214-26221. |
28 | Liu W, Lin D C, Pei A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J]. Journal of the American Chemical Society, 2016, 138(47): 15443-15450. |
29 | Huang K, Liu Y, Liu H L. Understanding and predicting lithium crystal growth on perfect and defective interfaces: a Kohn-Sham density functional study[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37239-37246. |
30 | Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. The Journal of Chemical Physics, 1990, 92(1): 508-517. |
31 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
32 | Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B: Condensed Matter, 1992, 46(11): 6671-6687. |
33 | Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59(11): 7413-7421. |
34 | Olsson E, Chai G L, Dove M, et al. Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces[J]. Nanoscale, 2019, 11(12): 5274-5284. |
35 | Chen Y X, Dou X Y, Wang K, et al. Lithium dendrites inhibition via diffusion enhancement[J]. Advanced Energy Materials, 2019, 9(17): 1900019. |
36 | Li K, Hu Z Y, Ma J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019, 31(33): 1902399. |
37 | Zhou L J, Hou Z F, Gao B, et al. Doped graphenes as anodes with large capacity for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(35): 13407-13413. |
38 | Liu W, Zhai P B, Qin S J, et al. Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth[J]. Journal of Energy Chemistry, 2021, 56: 463-469. |
[1] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[2] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[3] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[4] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[7] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[8] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[9] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[10] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[11] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[12] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[13] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[14] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[15] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 168
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||