CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1120-1132.DOI: 10.11949/0438-1157.20240813
• Process system engineering • Previous Articles Next Articles
Yaqi HOU(), Wei ZHANG(
), Hong ZHANG, Feiyu GAO, Jiahua HU
Received:
2024-07-17
Revised:
2024-09-23
Online:
2025-03-28
Published:
2025-03-25
Contact:
Wei ZHANG
通讯作者:
张玮
作者简介:
侯亚祺(2000—),男,硕士研究生,1016451082@qq.com
基金资助:
CLC Number:
Yaqi HOU, Wei ZHANG, Hong ZHANG, Feiyu GAO, Jiahua HU. Optimization of LBM multiphase flow models based on machine learning and particle swarm algorithm[J]. CIESC Journal, 2025, 76(3): 1120-1132.
侯亚祺, 张玮, 张鸿, 高飞雨, 胡嘉华. 基于机器学习与粒子群算法的LBM多相流模型优化[J]. 化工学报, 2025, 76(3): 1120-1132.
特性 | BP神经网络 | SVR | GPR | 随机森林 |
---|---|---|---|---|
非线性建模能力 | 强 | 强 | 强 | 强 |
学习与泛化能力 | 强 | 强 | 强 | 强 |
适用性 | 分类、回归、聚类等 | 回归、高维数据处理 | 回归、不确定性量化 | 回归、高维数据处理 |
训练时间 | 长 | 较长 | 较长 | 较短 |
局部最优 | 易陷入 | 可能 | 较少 | 较少 |
参数敏感性 | 高 | 高 | 中等 | 低 |
适用数据规模 | 大规模 | 中等规模 | 小规模 | 大规模 |
不确定性估计 | 不提供 | 不提供 | 提供 | 不提供 |
计算复杂度 | 中等 | 高 | 高 | 高 |
Table 1 Comparison of three machine learning features
特性 | BP神经网络 | SVR | GPR | 随机森林 |
---|---|---|---|---|
非线性建模能力 | 强 | 强 | 强 | 强 |
学习与泛化能力 | 强 | 强 | 强 | 强 |
适用性 | 分类、回归、聚类等 | 回归、高维数据处理 | 回归、不确定性量化 | 回归、高维数据处理 |
训练时间 | 长 | 较长 | 较长 | 较短 |
局部最优 | 易陷入 | 可能 | 较少 | 较少 |
参数敏感性 | 高 | 高 | 中等 | 低 |
适用数据规模 | 大规模 | 中等规模 | 小规模 | 大规模 |
不确定性估计 | 不提供 | 不提供 | 提供 | 不提供 |
计算复杂度 | 中等 | 高 | 高 | 高 |
序号 | 连续相速度 | 分散相速度 | gama值 | 连续相黏度 | 分散相黏度 | 伸长率/% |
---|---|---|---|---|---|---|
1 | 0.0015 | 0.0015 | 0.12 | 2.20 | 0.6 | 62.6 |
2 | 0.0020 | 0.0020 | 0.12 | 2.20 | 0.6 | 74.5 |
3 | 0.0025 | 0.0025 | 0.12 | 2.20 | 0.6 | 70.2 |
4 | 0.0030 | 0.0030 | 0.12 | 2.20 | 0.6 | 67.8 |
5 | 0.0035 | 0.0035 | 0.12 | 2.20 | 0.6 | 56.4 |
6 | 0.0040 | 0.0040 | 0.12 | 2.20 | 0.6 | 45.5 |
7 | 0.0045 | 0.0045 | 0.12 | 2.20 | 0.6 | 38.2 |
... | ||||||
9 | 0.0550 | 0.0550 | 0.12 | 2.20 | 0.6 | -17.9 |
10 | 0.0060 | 0.0060 | 0.12 | 2.20 | 0.6 | -10.3 |
133 | 0.0035 | 0.0035 | 0.12 | 1.25 | 0.8 | 155.7 |
134 | 0.0050 | 0.0050 | 0.16 | 2.20 | 0.6 | 140.3 |
135 | 0.0050 | 0.0050 | 0.17 | 2.20 | 0.6 | 243.1 |
136 | 0.0040 | 0.0040 | 0.14 | 2.20 | 0.6 | 116.0 |
137 | 0.0050 | 0.0050 | 0.15 | 2.20 | 0.6 | 95.5 |
Table 2 Partial simulation data of T-channel gas-liquid two-phase flow
序号 | 连续相速度 | 分散相速度 | gama值 | 连续相黏度 | 分散相黏度 | 伸长率/% |
---|---|---|---|---|---|---|
1 | 0.0015 | 0.0015 | 0.12 | 2.20 | 0.6 | 62.6 |
2 | 0.0020 | 0.0020 | 0.12 | 2.20 | 0.6 | 74.5 |
3 | 0.0025 | 0.0025 | 0.12 | 2.20 | 0.6 | 70.2 |
4 | 0.0030 | 0.0030 | 0.12 | 2.20 | 0.6 | 67.8 |
5 | 0.0035 | 0.0035 | 0.12 | 2.20 | 0.6 | 56.4 |
6 | 0.0040 | 0.0040 | 0.12 | 2.20 | 0.6 | 45.5 |
7 | 0.0045 | 0.0045 | 0.12 | 2.20 | 0.6 | 38.2 |
... | ||||||
9 | 0.0550 | 0.0550 | 0.12 | 2.20 | 0.6 | -17.9 |
10 | 0.0060 | 0.0060 | 0.12 | 2.20 | 0.6 | -10.3 |
133 | 0.0035 | 0.0035 | 0.12 | 1.25 | 0.8 | 155.7 |
134 | 0.0050 | 0.0050 | 0.16 | 2.20 | 0.6 | 140.3 |
135 | 0.0050 | 0.0050 | 0.17 | 2.20 | 0.6 | 243.1 |
136 | 0.0040 | 0.0040 | 0.14 | 2.20 | 0.6 | 116.0 |
137 | 0.0050 | 0.0050 | 0.15 | 2.20 | 0.6 | 95.5 |
项目 | 连续相流速 | 分散相流速 | 连续相黏度 | gama值 | 伸长率 | |
---|---|---|---|---|---|---|
连续相流速 | 相关系数 | 1.000 | 0.454 | 0.124 | 0.157 | -0.288 |
显著性 | — | 0 | 0.148 | 0.067 | 0.001 | |
分散相流速 | 相关系数 | 0.454 | 1.000 | -0.077 | 0.092 | -0.509 |
显著性 | 0 | — | 0.368 | 0.287 | 0 | |
连续相黏度 | 相关系数 | -0.124 | -0.077 | 1.000 | 0.033 | 0.189 |
显著性 | 0.148 | 0.368 | — | 0.703 | 0.027 | |
gama值 | 相关系数 | 0.157 | 0.092 | 0.033 | 1.000 | 0.373 |
显著性 | 0.067 | 0.287 | 0.703 | — | 0 | |
伸长率 | 相关系数 | -0.288 | -0.509 | 0.189 | 0.373 | 1.000 |
显著性 | 0.001 | 0.002 | 0.027 | 0 | — | |
分散相黏度 | 相关系数 | 0.066 | 0.084 | -0.34 | -0.059 | -0.015 |
显著性 | 0.443 | 0.331 | 0 | 0.492 | 0.860 |
Table 3 Spearman correlation analysis
项目 | 连续相流速 | 分散相流速 | 连续相黏度 | gama值 | 伸长率 | |
---|---|---|---|---|---|---|
连续相流速 | 相关系数 | 1.000 | 0.454 | 0.124 | 0.157 | -0.288 |
显著性 | — | 0 | 0.148 | 0.067 | 0.001 | |
分散相流速 | 相关系数 | 0.454 | 1.000 | -0.077 | 0.092 | -0.509 |
显著性 | 0 | — | 0.368 | 0.287 | 0 | |
连续相黏度 | 相关系数 | -0.124 | -0.077 | 1.000 | 0.033 | 0.189 |
显著性 | 0.148 | 0.368 | — | 0.703 | 0.027 | |
gama值 | 相关系数 | 0.157 | 0.092 | 0.033 | 1.000 | 0.373 |
显著性 | 0.067 | 0.287 | 0.703 | — | 0 | |
伸长率 | 相关系数 | -0.288 | -0.509 | 0.189 | 0.373 | 1.000 |
显著性 | 0.001 | 0.002 | 0.027 | 0 | — | |
分散相黏度 | 相关系数 | 0.066 | 0.084 | -0.34 | -0.059 | -0.015 |
显著性 | 0.443 | 0.331 | 0 | 0.492 | 0.860 |
参数 | 选取范围 | 最终取值 |
---|---|---|
隐藏层节点数 | [ | 3 |
激活函数类型 | sigmoid、relu、tanh | sigmoid |
惩罚系数c | [0.001,0.01,0.1] | 0.001 |
Table 4 Hyperparameters of the BP model after particle swarm optimisation
参数 | 选取范围 | 最终取值 |
---|---|---|
隐藏层节点数 | [ | 3 |
激活函数类型 | sigmoid、relu、tanh | sigmoid |
惩罚系数c | [0.001,0.01,0.1] | 0.001 |
隐藏层节点 | 权重 | ||||
---|---|---|---|---|---|
输入层 节点1 | 输入层 节点2 | 输入层 节点3 | 输入层 节点4 | 输入层 节点5 | |
1 | 2.9297 | 0.4736 | 0.2100 | 1.3039 | 1.0948 |
2 | 0.6342 | 1.0059 | 1.0432 | 0.1369 | 0.3695 |
3 | 0.5965 | 0.8656 | 0.8292 | 0.1283 | 1.8448 |
Table 5 Initial weights after particle swarm optimisation: input layer to hidden layer
隐藏层节点 | 权重 | ||||
---|---|---|---|---|---|
输入层 节点1 | 输入层 节点2 | 输入层 节点3 | 输入层 节点4 | 输入层 节点5 | |
1 | 2.9297 | 0.4736 | 0.2100 | 1.3039 | 1.0948 |
2 | 0.6342 | 1.0059 | 1.0432 | 0.1369 | 0.3695 |
3 | 0.5965 | 0.8656 | 0.8292 | 0.1283 | 1.8448 |
隐藏层节点1 | 隐藏层节点2 | 隐藏层节点3 | 输出层节点 |
---|---|---|---|
0.4067 | 1.4686 | 0.5064 | -0.4521 |
Table 6 Initial weights after particle swarm optimisation: hidden to output layers
隐藏层节点1 | 隐藏层节点2 | 隐藏层节点3 | 输出层节点 |
---|---|---|---|
0.4067 | 1.4686 | 0.5064 | -0.4521 |
参数 | PSO-SVR | 最终取值 |
---|---|---|
选取范围 | ||
核函数类型 | 线性、多项式、径向基函数、sigmoid | 径向基函数 |
gama | [0.0001,0.001,0.01,0.1] | 0.001 |
惩罚系数c | [0.001,0.01,0.1] | 0.01 |
Table 7 Hyperparameters of the SVR model after particle swarm optimisation
参数 | PSO-SVR | 最终取值 |
---|---|---|
选取范围 | ||
核函数类型 | 线性、多项式、径向基函数、sigmoid | 径向基函数 |
gama | [0.0001,0.001,0.01,0.1] | 0.001 |
惩罚系数c | [0.001,0.01,0.1] | 0.01 |
组别 | 连续相速度 | 分散相 速度 | gama值 | 连续相黏度 | 分散相黏度 | 伸长率θ/% |
---|---|---|---|---|---|---|
第一组 | 0.0047 | 0.0047 | 0.11 | 1.80 | 0.75 | 10.95 |
第二组 | 0.0035 | 0.0045 | 0.11 | 1.80 | 0.75 | -2.12 |
第三组 | 0.0046 | 0.0046 | 0.12 | 1.55 | 0.60 | -9.43 |
第四组 | 0.0050 | 0.0050 | 0.13 | 1.55 | 0.60 | 15.38 |
第五组 | 0.0047 | 0.0047 | 0.11 | 1.80 | 0.75 | -5.20 |
Table 8 Table of parameters of the five-group stochastic model
组别 | 连续相速度 | 分散相 速度 | gama值 | 连续相黏度 | 分散相黏度 | 伸长率θ/% |
---|---|---|---|---|---|---|
第一组 | 0.0047 | 0.0047 | 0.11 | 1.80 | 0.75 | 10.95 |
第二组 | 0.0035 | 0.0045 | 0.11 | 1.80 | 0.75 | -2.12 |
第三组 | 0.0046 | 0.0046 | 0.12 | 1.55 | 0.60 | -9.43 |
第四组 | 0.0050 | 0.0050 | 0.13 | 1.55 | 0.60 | 15.38 |
第五组 | 0.0047 | 0.0047 | 0.11 | 1.80 | 0.75 | -5.20 |
组别 | PSO-SVR | GPR | PSO-BP | LBM模拟伸长率/% | |||
---|---|---|---|---|---|---|---|
预测伸长率θ/% | 误差值/% | 预测伸长率θ/% | 误差值/% | 预测伸长率θ/% | 误差值/% | ||
第一组 | 9.91 | 1.04 | 6.37 | 4.58 | -6.25 | 17.20 | 10.95 |
第二组 | -4.47 | 2.35 | 6.70 | 8.82 | -12.60 | 10.48 | -2.12 |
第三组 | -8.30 | 1.13 | -4.30 | 5.13 | -2.39 | 7.04 | -9.43 |
第四组 | 14.72 | 0.66 | 7.50 | 7.88 | 6.79 | 8.59 | 15.38 |
第五组 | -7.25 | 2.05 | -9.40 | 4.20 | -8.51 | 3.31 | -5.20 |
Table 9 PSO-BP, PSO-SVR, GPR model predicted elongation vs simulated true elongation
组别 | PSO-SVR | GPR | PSO-BP | LBM模拟伸长率/% | |||
---|---|---|---|---|---|---|---|
预测伸长率θ/% | 误差值/% | 预测伸长率θ/% | 误差值/% | 预测伸长率θ/% | 误差值/% | ||
第一组 | 9.91 | 1.04 | 6.37 | 4.58 | -6.25 | 17.20 | 10.95 |
第二组 | -4.47 | 2.35 | 6.70 | 8.82 | -12.60 | 10.48 | -2.12 |
第三组 | -8.30 | 1.13 | -4.30 | 5.13 | -2.39 | 7.04 | -9.43 |
第四组 | 14.72 | 0.66 | 7.50 | 7.88 | 6.79 | 8.59 | 15.38 |
第五组 | -7.25 | 2.05 | -9.40 | 4.20 | -8.51 | 3.31 | -5.20 |
组别 | 连续相 速度 | 分散相 速度 | gama值 | 连续相黏度 | 分散相黏度 | 伸长率 预测值θ/% |
---|---|---|---|---|---|---|
1 | 0.0023 | 0.0048 | 0.12 | 2.2 | 0.6 | 0.078 |
Table 10 Optimal model parameters for LBM under PSO-SVR prediction
组别 | 连续相 速度 | 分散相 速度 | gama值 | 连续相黏度 | 分散相黏度 | 伸长率 预测值θ/% |
---|---|---|---|---|---|---|
1 | 0.0023 | 0.0048 | 0.12 | 2.2 | 0.6 | 0.078 |
1 | 尧超群, 乐军, 赵玉潮, 等. 微通道内气-液弹状流动及传质特性研究进展[J]. 化工学报, 2015, 66(8): 2759-2766. |
Yao C Q, Le J, Zhao Y C, et al. Review on flow and mass transfer characteristics of gas-liquid slug flowin microchannels[J]. CIESC Journal, 2015, 66(8): 2759-2766. | |
2 | Zaloha P, Kristal J, Jiricny V, et al. Characteristics of liquid slugs in gas-liquid Taylor flow in microchannels[J]. Chemical Engineering Science, 2012, 68(1): 640-649. |
3 | Peng D Y, Xin F, Zhang L X, et al. Experiments and modeling on bubble uniformity of Taylor flow in T-junction microchannel[J]. Chemical Engineering Science, 2015, 128: 11-20. |
4 | Gupta R, Fletcher D F, Haynes B S. On the CFD modelling of Taylor flow in microchannels[J]. Chemical Engineering Science, 2009, 64(12): 2941-2950. |
5 | Jeong H H, Yadavali S, Issadore D, et al. Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators[J]. Lab on a Chip, 2017, 17(15): 2667-2673. |
6 | Dangla R, Kayi S C, Baroud C N. Droplet microfluidics driven by gradients of confinement[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(3): 853-858. |
7 | Chen L, Kang Q J, Mu Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. |
8 | Molaeimanesh G R, Saeidi Googarchin H, Qasemian Moqaddam A. Lattice Boltzmann simulation of proton exchange membrane fuel cells-a review on opportunities and challenges[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22221-22245. |
9 | Qian D Y, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science, 2006, 61(23): 7609-7625. |
10 | Jang H S, Park D S. Microfabrication of microchannels for fuel cell plates[J]. Sensors, 2010, 10(1): 167-175. |
11 | Yuan M, Feng H B, Zhang W, et al. Gas-liquid sulfonation in T-shaped microchannel for DBSA synthesis and process optimization with response surface method[J]. Chemical Engineering and Processing-Process Intensification, 2022, 174: 108890. |
12 | Takebayashi Y, Sue K, Yoda S, et al. Direct carbonylation of nitrobenzene to phenylisocyanate using gas-iquid slug flow in microchannel[J]. Chemical Engineering Journal, 2012, 180: 250-254. |
13 | Pahinkar D G, Garimella S, Robbins T R. Feasibility of using adsorbent-coated microchannels for pressure swing adsorption: parametric studies on depressurization[J]. Industrial & Engineering Chemistry Research, 2015, 54(41): 10103-10114. |
14 | Shafizadeh A, Shahbeig H, Nadian M H, et al. Machine learning predicts and optimizes hydrothermal liquefaction of biomass[J]. Chemical Engineering Journal, 2022, 445: 136579. |
15 | Bandi P, Manelil NP, Maiya MP, et al. CFD driven prediction of mean radiant temperature inside an automobile cabin using machine learning[J]. Thermal Science and Engineering Progress, 2023, 37: 101619. |
16 | Qian Y H, D'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. EPL (Europhysics Letters), 1992, 17: 479. |
17 | Guo Z L, Zheng C G, Shi B C. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(4 Pt 2B): 046308. |
18 | Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. |
19 | Li Q, Luo K H, Li X J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(1 Pt 2): 016709. |
20 | Li Q, Luo K H, Li X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, 2013, 87(5): 053301. |
21 | Krüger T, Kusumaatmaja H, Kuzmin A, et al. The Lattice Boltzmann Method: Principles and Practice[M]. Switzerland: Springer, 2017. |
22 | Ziegler D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993, 71(5): 1171-1177. |
23 | Li Q, Luo K H, Kang Q J, et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(5): 053301. |
24 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
25 | Warnier M J F, de Croon M H J M, Rebrov E V, et al. Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluidics and Nanofluidics, 2010, 8(1): 33-45. |
26 | Ganapathy H, Al-Hajri E, Ohadi M M. Phase field modeling of Taylor flow in mini/microchannels (part Ⅰ): Bubble formation mechanisms and phase field parameters[J]. Chemical Engineering Science, 2013, 94: 138-149. |
27 | Dai L, Cai W, Xin F. Numerical study on bubble formation of a gas-liquid flow in a T-junction microchannel[J]. Chemical Engineering & Technology, 2009, 32(12): 1984-1991. |
28 | Awad M, Khanna R. Support Vector Regression[M]//Efficient Learning Machines. Berkeley, CA: Apress, 2015: 67-80. |
29 | Masampally V S, Pareek A, Runkana V. Cascade Gaussian process regression framework for biomass prediction in a fed-batch reactor[C]//2018 IEEE Symposium Series on Computational Intelligence (SSCI). Bangalore, India: IEEE, 2018: 128-135. |
30 | 刘毅, 王海清, 李平. 局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用[J]. 化工学报, 2007, 58(11): 2846-2851. |
Liu Y, Wang H Q, Li P. Local least squares support vector regression with application toonline modeling for batch processes[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(11): 2846-2851. | |
31 | Yi G, Shi J Q, Choi T. Penalized Gaussian process regression and classification for high-dimensional nonlinear data[J]. Biometrics, 2011, 67(4): 1285-1294. |
32 | 刘东飞, 张帆, 刘铮, 等. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
Liu D F, Zhang F, Liu Z, et al. A review of machine learning potentials and their applications tomolecular simulation[J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[1] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
[2] | Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media [J]. CIESC Journal, 2025, 76(1): 161-172. |
[3] | Haijun FENG, Bingxuan ZHANG, Jian ZHOU. Predicting and interpreting the toxicity of ionic liquids using graph neural network [J]. CIESC Journal, 2025, 76(1): 93-106. |
[4] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[5] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[6] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[7] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[8] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[9] | Yewei DING, Wenbo KANG, Yutong SONG, Qinxi FAN, Yuanhui JI. Mechanism and screening of indomethacin self-assembled nanomedical drugs [J]. CIESC Journal, 2024, 75(11): 4141-4151. |
[10] | Maoxian WANG, Qidian SUN, Zhe FU, Fang HUA, Ye JI, Yi CHENG. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning [J]. CIESC Journal, 2024, 75(11): 4320-4332. |
[11] | Gen LIU, Zhongshun SUN, Bo ZHANG, Rongjiang ZHANG, Zhiqiang WU, Bolun YANG. Establishment of machine learning-driven biomass pyrolysis model and optimization of volatiles chemical looping reforming hydrogen production process [J]. CIESC Journal, 2024, 75(11): 4333-4347. |
[12] | Jian RUAN, Shuang LI, Zhenghui WEN. Application of automation and artificial intelligence in flow chemistry [J]. CIESC Journal, 2024, 75(11): 4120-4140. |
[13] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[14] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[15] | Longfei JIA, Shaotong FU, Xing XIANG, Huahai ZHANG, Tao ZHANG, Limin WANG. Lattice Boltzmann simulations of the effect of particles movement on momentum transfer process [J]. CIESC Journal, 2023, 74(2): 735-747. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||