CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 435-443.DOI: 10.11949/0438-1157.20241387
• Energy and environmental engineering • Previous Articles
Hao HUANG(
), Wen WANG(
), Peiyun LI
Received:2024-12-02
Revised:2024-12-17
Online:2025-06-26
Published:2025-06-25
Contact:
Wen WANG
通讯作者:
王文
作者简介:黄灏(1999—),男,硕士研究生,paff-official@sjtu.edu.cn
CLC Number:
Hao HUANG, Wen WANG, Peiyun LI. Research on properties of wankel expanders under series connection[J]. CIESC Journal, 2025, 76(S1): 435-443.
黄灏, 王文, 李沛昀. 三角转子膨胀机串联运行特性研究[J]. 化工学报, 2025, 76(S1): 435-443.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 转子半径R/mm | 60.25 |
| 形状因子K | 5 |
| 腔体高度B/mm | 84 |
| 偏心度e/mm | 12.05 |
| 进气行程角φin/(°) | 110 |
| 有效工作容积Vdisp/mm3 | 316*105 |
| 容积效率ηv | 0.4 |
| 排气压力Pout/bar | 0.75 |
| 工质类型 | 水蒸气 |
Table 1 The parameters of the Wankel expander given in Refs. [14-17]
| 参数 | 数值 |
|---|---|
| 转子半径R/mm | 60.25 |
| 形状因子K | 5 |
| 腔体高度B/mm | 84 |
| 偏心度e/mm | 12.05 |
| 进气行程角φin/(°) | 110 |
| 有效工作容积Vdisp/mm3 | 316*105 |
| 容积效率ηv | 0.4 |
| 排气压力Pout/bar | 0.75 |
| 工质类型 | 水蒸气 |
转速/ (r/min) | 进口压力/ bar | 输出功率(实验)[ | 输出功率(计算)[ | 输出功率(本文)/kW |
|---|---|---|---|---|
| 1000 | 5.7 | 2.7 | 3.0 | 2.85 |
| 1000 | 6.4 | 3.8 | 3.5 | 3.55 |
| 1000 | 7.4 | 4.8 | 4.1 | 4.55 |
| 2000 | 5.4 | 5.4 | 5.2 | 5.46 |
| 2000 | 5.8 | 6.7 | 5.7 | 6.30 |
| 2000 | 6.6 | 8.4 | 6.8 | 7.96 |
| 3000 | 5.2 | 7.2 | 6.7 | 7.54 |
| 3000 | 5.9 | 9.2 | 7.9 | 9.73 |
| 3000 | 6.6 | 10.0 | 9.1 | 11.90 |
Table 2 Comparison of experimental and computational data in Ref.[14] under different rotational speeds
转速/ (r/min) | 进口压力/ bar | 输出功率(实验)[ | 输出功率(计算)[ | 输出功率(本文)/kW |
|---|---|---|---|---|
| 1000 | 5.7 | 2.7 | 3.0 | 2.85 |
| 1000 | 6.4 | 3.8 | 3.5 | 3.55 |
| 1000 | 7.4 | 4.8 | 4.1 | 4.55 |
| 2000 | 5.4 | 5.4 | 5.2 | 5.46 |
| 2000 | 5.8 | 6.7 | 5.7 | 6.30 |
| 2000 | 6.6 | 8.4 | 6.8 | 7.96 |
| 3000 | 5.2 | 7.2 | 6.7 | 7.54 |
| 3000 | 5.9 | 9.2 | 7.9 | 9.73 |
| 3000 | 6.6 | 10.0 | 9.1 | 11.90 |
| 参数 | 膨胀机1 | 膨胀机2 |
|---|---|---|
| 转子半径R/mm | 50 | 80 |
| 形状因子K | 6 | 6 |
| 腔体高度B/mm | 25 | 25 |
| 转速ω/(r/min) | 1200 | 1200 |
| 进气截面积Ain/mm2 | 80 | 80 |
| 排气截面积Aout/mm2 | 80 | 160 |
| 泄漏间隙δ/mm | 0.25 | 0.25 |
| 进气入口压力Pin/MPa | 70 | — |
| 进气入口温度Tin/K | 300 | — |
| 排气背压Pb/kPa | — | 20000 |
| 缓冲容积V/cm3 | 20 | — |
| 进气行程角φin/(°) | 135 | 135 |
| 理论体积膨胀比ε | 2 | 2 |
| 对流强度系数h/(W/ (m2·K)) | 1200 | 1800 |
Table 3 Parameters of two-stage series expanders
| 参数 | 膨胀机1 | 膨胀机2 |
|---|---|---|
| 转子半径R/mm | 50 | 80 |
| 形状因子K | 6 | 6 |
| 腔体高度B/mm | 25 | 25 |
| 转速ω/(r/min) | 1200 | 1200 |
| 进气截面积Ain/mm2 | 80 | 80 |
| 排气截面积Aout/mm2 | 80 | 160 |
| 泄漏间隙δ/mm | 0.25 | 0.25 |
| 进气入口压力Pin/MPa | 70 | — |
| 进气入口温度Tin/K | 300 | — |
| 排气背压Pb/kPa | — | 20000 |
| 缓冲容积V/cm3 | 20 | — |
| 进气行程角φin/(°) | 135 | 135 |
| 理论体积膨胀比ε | 2 | 2 |
| 对流强度系数h/(W/ (m2·K)) | 1200 | 1800 |
| 序号 | 下级膨胀机转子半径/ mm | 下级膨胀机腔体高度/mm | 下级膨胀机转子半径/mm | 下级膨胀机腔体高度/mm | 上级转速/ (r/min) | 下级转速/ (r/min) |
|---|---|---|---|---|---|---|
| 1 | 50 | 25 | 40 | 40 | 1200 | 1200 |
| 2 | 50 | 25 | 70 | 25 | 1200 | 1200 |
| 3 | 50 | 25 | 80 | 40 | 1200 | 600 |
| 4 | 50 | 25 | 80 | 25 | 1200 | 1200 |
| 5 | 50 | 25 | 80 | 30 | 1200 | 1200 |
| 6 | 50 | 25 | 80 | 40 | 1200 | 1200 |
| 7 | 50 | 25 | 80 | 60 | 1200 | 1200 |
Table 4 Expanders parameters in discussion
| 序号 | 下级膨胀机转子半径/ mm | 下级膨胀机腔体高度/mm | 下级膨胀机转子半径/mm | 下级膨胀机腔体高度/mm | 上级转速/ (r/min) | 下级转速/ (r/min) |
|---|---|---|---|---|---|---|
| 1 | 50 | 25 | 40 | 40 | 1200 | 1200 |
| 2 | 50 | 25 | 70 | 25 | 1200 | 1200 |
| 3 | 50 | 25 | 80 | 40 | 1200 | 600 |
| 4 | 50 | 25 | 80 | 25 | 1200 | 1200 |
| 5 | 50 | 25 | 80 | 30 | 1200 | 1200 |
| 6 | 50 | 25 | 80 | 40 | 1200 | 1200 |
| 7 | 50 | 25 | 80 | 60 | 1200 | 1200 |
| 序号 | 上下级体积 流量比 | 上级实际 膨胀比 | 下级实际 膨胀比 | 等熵效率/ % | 总输出功率/ kW | 功率密度/ (kJ/kg) |
|---|---|---|---|---|---|---|
| 1 | 1∶1.02 | 1.59 | 1.37 | 12.41 | 77.20 | 158.03 |
| 2 | 1∶1.96 | 1.32 | 1.50 | 16.22 | 100.32 | 235.71 |
| 3 | 1∶2.04 | 1.28 | 1.42 | 15.15 | 78.79 | 191.93 |
| 4 | 1∶2.56 | 1.48 | 1.95 | 17.20 | 114.04 | 262.82 |
| 5 | 1∶3.07 | 1.51 | 1.42 | 16.64 | 123.41 | 259.76 |
| 6 | 1∶4.11 | 1.79 | 1.30 | 14.47 | 126.39 | 237.39 |
| 7 | 1∶6.11 | 2.19 | 1.14 | 8.37 | 108.12 | 171.13 |
Table 5 Performance of two-stage expanders
| 序号 | 上下级体积 流量比 | 上级实际 膨胀比 | 下级实际 膨胀比 | 等熵效率/ % | 总输出功率/ kW | 功率密度/ (kJ/kg) |
|---|---|---|---|---|---|---|
| 1 | 1∶1.02 | 1.59 | 1.37 | 12.41 | 77.20 | 158.03 |
| 2 | 1∶1.96 | 1.32 | 1.50 | 16.22 | 100.32 | 235.71 |
| 3 | 1∶2.04 | 1.28 | 1.42 | 15.15 | 78.79 | 191.93 |
| 4 | 1∶2.56 | 1.48 | 1.95 | 17.20 | 114.04 | 262.82 |
| 5 | 1∶3.07 | 1.51 | 1.42 | 16.64 | 123.41 | 259.76 |
| 6 | 1∶4.11 | 1.79 | 1.30 | 14.47 | 126.39 | 237.39 |
| 7 | 1∶6.11 | 2.19 | 1.14 | 8.37 | 108.12 | 171.13 |
| 进口压力/kPa | 出口压力/kPa | 上级实际膨胀比 | 下级实际膨胀比 | 总输出功率/kW | 质量流量/(kg/s) | 功率密度/(kJ/kg) |
|---|---|---|---|---|---|---|
| 70000 | 40000 | 1.19 | 1.07 | 39.96 | 0.3871 | 103.23 |
| 70000 | 20000 | 1.35 | 1.49 | 114.04 | 0.4339 | 262.82 |
| 70000 | 15000 | 1.39 | 1.71 | 134.32 | 0.4438 | 302.66 |
| 70000 | 10000 | 1.43 | 2.02 | 155.98 | 0.4514 | 345.54 |
| 70000 | 5000 | 1.44 | 2.28 | 180.77 | 0.4526 | 399.40 |
Table 6 Results of a two-stage series expanders system under different inlet and outlet pressures
| 进口压力/kPa | 出口压力/kPa | 上级实际膨胀比 | 下级实际膨胀比 | 总输出功率/kW | 质量流量/(kg/s) | 功率密度/(kJ/kg) |
|---|---|---|---|---|---|---|
| 70000 | 40000 | 1.19 | 1.07 | 39.96 | 0.3871 | 103.23 |
| 70000 | 20000 | 1.35 | 1.49 | 114.04 | 0.4339 | 262.82 |
| 70000 | 15000 | 1.39 | 1.71 | 134.32 | 0.4438 | 302.66 |
| 70000 | 10000 | 1.43 | 2.02 | 155.98 | 0.4514 | 345.54 |
| 70000 | 5000 | 1.44 | 2.28 | 180.77 | 0.4526 | 399.40 |
| 参数 | 数值 |
|---|---|
| 转子半径R/ mm | 25 |
| 形状因子K | 6 |
| 腔体高度B/mm | 60 |
| 偏心度e / mm | 10 |
| 进气行程角φin/(°) | 90 |
| 转速ω/(r/min) | 1200 |
| 进气截面积Ain / mm2 | 80 |
| 排气截面积Aout / mm2 | 80 |
| 泄漏间隙δ/ mm | 0.25 |
| 理论体积膨胀比ε | 4 |
Table 7 Parameters of a single-stage expander
| 参数 | 数值 |
|---|---|
| 转子半径R/ mm | 25 |
| 形状因子K | 6 |
| 腔体高度B/mm | 60 |
| 偏心度e / mm | 10 |
| 进气行程角φin/(°) | 90 |
| 转速ω/(r/min) | 1200 |
| 进气截面积Ain / mm2 | 80 |
| 排气截面积Aout / mm2 | 80 |
| 泄漏间隙δ/ mm | 0.25 |
| 理论体积膨胀比ε | 4 |
| 1 | Di Battista D, Mauriello M, Cipollone R. Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle[J]. Applied Energy, 2015, 152: 109-120. |
| 2 | Tian Y F, Xing Z W, He Z L, et al. Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications[J]. Energy, 2017, 141: 692-701. |
| 3 | Li G, Zheng X F. Thermal energy storage system integration forms for a sustainable future[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 736-757. |
| 4 | Qiu G Q, Liu H, Riffat S. Expanders for micro-CHP systems with organic Rankine cycle[J]. Applied Thermal Engineering, 2011, 31(16): 3301-3307. |
| 5 | Pantano F, Capata R. Expander selection for an on board ORC energy recovery system[J]. Energy, 2017, 141: 1084-1096. |
| 6 | Qyyum M A, Naquash A, Sial N R, et al. CO2 precooled dual phase expander refrigeration cycles for offshore and small-scale LNG production: Energy, exergy, and economic evaluation[J]. Energy, 2023, 262: 125378. |
| 7 | Sanaye S, Mohammadi Nasab A. Modeling and optimizing a CHP system for natural gas pressure reduction plant[J]. Energy, 2012, 40(1): 358-369. |
| 8 | Handa K, Oshima S, Rembutsu T. Precooling temperature relaxation technology in hydrogen refueling for fuel-cell vehicles[J]. International Journal of Hydrogen Energy, 2021, 46(67): 33511-33522. |
| 9 | Elgowainy A, Reddi K, Lee D Y, et al. Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations[J]. International Journal of Hydrogen Energy, 2017, 42(49): 29067-29079. |
| 10 | Yoshida J, Matsuo E, Takata Y, et al. Thermodynamic analysis of high pressure hydrogen gas refueling system with turbo-expanders[J]. Mechanical Engineering Journal, 2019, 6(3): 18-388-18-00388. |
| 11 | 张兴. 井口高压天然气发电用三角转子气动机设计与仿真[D]. 成都: 西南石油大学, 2018. |
| Zhang X. Design and simulation of triangular rotor pneumatic motor for wellhead high-pressure natural gas power generation[D]. Chengdu: Southwest Petroleum University, 2018. | |
| 12 | Badr O, Naik S, O'Callaghan P W, et al. Rotary Wankel engines as expansion devices in steam Rankine-cycle engines[J]. Applied Energy, 1991, 39(1): 59-76. |
| 13 | Francesconi M, Caposciutti G, Antonelli M. An experimental and numerical analysis of the performances of a Wankel steam expander[J]. Energy, 2018, 164: 615-626. |
| 14 | Antonelli M, Baccioli A, Francesconi M, et al. Experimental and numerical analysis of the valve timing effects on the performances of a small volumetric rotary expansion device[J]. Energy Procedia, 2014, 45: 1077-1086. |
| 15 | Antonelli M, Baccioli A, Francesconi M, et al. Numerical and experimental analysis of the intake and exhaust valves of a rotary expansion device for micro generation[J]. Energy Procedia, 2015, 81: 461-471. |
| 16 | Antonelli M, Francesconi M, Baccioli A, et al. Experimental results of a wankel-type expander fuelled by compressed air and saturated steam[J]. Energy Procedia, 2017, 105: 2929-2934. |
| 17 | Francesconi M, Analysis and design of devices for medium temperature solar thermal energy conversion[D]. Pisa: University of Pisa. 2017: 168-230. |
| 18 | Sadiq G A, Tozer G, Al-Dadah R, et al. CFD simulations of compressed air two stage rotary Wankel expander–Parametric analysis[J]. Energy Conversion and Management, 2017, 142: 42-52. |
| 19 | 王云, 刘小勇, 周勇. 三角转子气动发动机设计及性能分析[J]. 机械科学与技术, 2009, 28(7): 950-954, 959. |
| Wang Y, Liu X Y, Zhou Y. Design and performance analysis of a triangle rotary piston air-powered engine[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(7): 950-954, 959. | |
| 20 | 潘剑锋, 肖曼, 范宝伟, 等. 配气相位对三角转子气动发动机性能的影响[J]. 江苏大学学报(自然科学版), 2016, 37(2): 141-146. |
| Pan J F, Xiao M, Fan B W, et al. Effect of valve timing on Wankel rotor air-powered engine[J]. Journal of Jiangsu University (Natural Science Edition), 2016, 37(2): 141-146. | |
| 21 | 李沛昀, 孟金龙, 王文, 等. 三角转子膨胀机在有机朗肯循环中应用分析[J]. 太阳能学报, 2023, 44(2): 1-8. |
| Li P Y, Meng J L, Wang W, et al. Application analysis of wankel expander for organic Rankine cycle[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 1-8. | |
| 22 | 李沛昀, 李杨, 王文彬, 等. 三角转子膨胀机在跨临界CO2制冷循环中的应用分析[J]. 化工学报, 2021, 72(S1): 161-169. |
| Li P Y, Li Y, Wang W B, et al. Application analysis of triangular rotor expander in transcritical CO2 refrigeration cycle[J]. CIESC Journal, 2021, 72(S1): 161-169. |
| [1] | Wei LI, Hao CHEN, Gang KE, Xiaosheng HUANG, Chengjiao LI, Hang GUO, Fang YE. Simulation of the fresh air system in the simulation platform of the high-altitude environmental adaptability laboratory [J]. CIESC Journal, 2025, 76(S1): 360-369. |
| [2] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [3] | Yan LI, Meili LEI, Xingang LI. Regulation strategy of sequential simulated moving bed structure based on separation performance [J]. CIESC Journal, 2025, 76(5): 2219-2229. |
| [4] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
| [5] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
| [6] | Mingcheng SHAO, Yugui PAN, Zengli WANG, Qiang ZHAO. Study on the thermal properties of CO2/CH4 mixtures in the theoretical trans-critical pressurization process [J]. CIESC Journal, 2024, 75(10): 3742-3751. |
| [7] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
| [8] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
| [9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
| [10] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
| [11] | Yifang DONG, Yingying YU, Xuegong HU, Gang PEI. Electric field effect on wetting and capillary flow characteristics in vertical microgrooves [J]. CIESC Journal, 2022, 73(7): 2952-2961. |
| [12] | Ziyi CHI, Chengwei LIU, Yuling ZHANG, Xuegang LI, Wende XIAO. Reactor simulation and optimization for CO oxidative coupling to dimethyl oxalate reactions [J]. CIESC Journal, 2022, 73(11): 4974-4986. |
| [13] | Huiyan WANG, Yiqin CHEN, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization [J]. CIESC Journal, 2022, 73(1): 376-383. |
| [14] | JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105. |
| [15] | Yuanxin FANG, Wu XIAO, Xiaobin JIANG, Xiangcun LI, Gaohong HE, Xuemei WU. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid [J]. CIESC Journal, 2021, 72(9): 4740-4749. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||