CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3403-3415.DOI: 10.11949/0438-1157.20241431
• Intelligent process engineering • Previous Articles Next Articles
Tao WANG1(
), Guangming LI1(
), Qiuxia HU2, Jing XU3
Received:2024-12-09
Revised:2025-02-07
Online:2025-08-13
Published:2025-07-25
Contact:
Guangming LI
通讯作者:
李光明
作者简介:王涛(2000—),男,硕士研究生,Iivresse7@163.com
基金资助:CLC Number:
Tao WANG, Guangming LI, Qiuxia HU, Jing XU. Optimization of warpage process for two-color injection products based on temporal evolution particle swarm optimization algorithm[J]. CIESC Journal, 2025, 76(7): 3403-3415.
王涛, 李光明, 胡秋霞, 徐静. 基于时序演变粒子群算法的双色注射产品翘曲工艺优化[J]. 化工学报, 2025, 76(7): 3403-3415.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | PP材料 | PC+ABS材料 |
|---|---|---|
| 固体密度/(g·cm-3) | 1.3717 | 1.1251 |
| 熔体密度/(g·cm-3) | 1.2309 | 1.0095 |
| 最大剪切应力/MPa | 0.25 | 0.4 |
| 最大剪切速率/s-1 | 100000 | 40000 |
| 第一方向弹性模量/MPa | 2822 | 2175.78 |
| 第二方向弹性模量/MPa | 2387 | 2188.67 |
| 泊松比1 | 0.375 | 0.374 |
| 泊松比2 | 0.389 | 0.396 |
Table 1 Characteristic parameters of materials
| 参数 | PP材料 | PC+ABS材料 |
|---|---|---|
| 固体密度/(g·cm-3) | 1.3717 | 1.1251 |
| 熔体密度/(g·cm-3) | 1.2309 | 1.0095 |
| 最大剪切应力/MPa | 0.25 | 0.4 |
| 最大剪切速率/s-1 | 100000 | 40000 |
| 第一方向弹性模量/MPa | 2822 | 2175.78 |
| 第二方向弹性模量/MPa | 2387 | 2188.67 |
| 泊松比1 | 0.375 | 0.374 |
| 泊松比2 | 0.389 | 0.396 |
| 参数 | 固定值 |
|---|---|
| 第一色熔体温度/℃ | 210 |
| 第一色注射时间/s | 1.6 |
| 第一色充填体积/% | 99 |
| 第一色保压压力/MPa | 70 |
| 第一色保压时间/s | 10 |
| 第一色冷却时间/s | 25 |
| 第二色熔体温度/℃ | 250 |
| 第二色注射时间/s | 1.5 |
| 第二色充填体积/% | 99 |
| 第二色保压压力/MPa | 95 |
| 第二色保压时间/s | 7 |
| 第二色冷却时间/s | 25 |
Table 2 Fixed values of injection molding process parameters
| 参数 | 固定值 |
|---|---|
| 第一色熔体温度/℃ | 210 |
| 第一色注射时间/s | 1.6 |
| 第一色充填体积/% | 99 |
| 第一色保压压力/MPa | 70 |
| 第一色保压时间/s | 10 |
| 第一色冷却时间/s | 25 |
| 第二色熔体温度/℃ | 250 |
| 第二色注射时间/s | 1.5 |
| 第二色充填体积/% | 99 |
| 第二色保压压力/MPa | 95 |
| 第二色保压时间/s | 7 |
| 第二色冷却时间/s | 25 |
| 成型工艺 | 水平1 | 水平2 | 水平3 |
|---|---|---|---|
| 第一色熔体温度/℃ | 210 | 220 | 230 |
| 第一色注射时间/s | 1.2 | 1.6 | 2 |
| 第一色充填体积/% | 95 | 97 | 99 |
| 第一色保压压力/MPa | 70 | 78 | 85 |
| 第一色保压时间/s | 7 | 10 | 13 |
| 第一色冷却时间/s | 25 | 30 | 35 |
| 第二色熔体温度/℃ | 245 | 255 | 265 |
| 第二色注射时间/s | 1.2 | 1.5 | 1.8 |
| 第二色充填体积/% | 95 | 97 | 99 |
| 第二色保压压力/MPa | 70 | 78 | 85 |
| 第二色保压时间/s | 7 | 10 | 13 |
| 第二色冷却时间/s | 25 | 30 | 35 |
Table 3 Orthogonal horizontal design of molding process
| 成型工艺 | 水平1 | 水平2 | 水平3 |
|---|---|---|---|
| 第一色熔体温度/℃ | 210 | 220 | 230 |
| 第一色注射时间/s | 1.2 | 1.6 | 2 |
| 第一色充填体积/% | 95 | 97 | 99 |
| 第一色保压压力/MPa | 70 | 78 | 85 |
| 第一色保压时间/s | 7 | 10 | 13 |
| 第一色冷却时间/s | 25 | 30 | 35 |
| 第二色熔体温度/℃ | 245 | 255 | 265 |
| 第二色注射时间/s | 1.2 | 1.5 | 1.8 |
| 第二色充填体积/% | 95 | 97 | 99 |
| 第二色保压压力/MPa | 70 | 78 | 85 |
| 第二色保压时间/s | 7 | 10 | 13 |
| 第二色冷却时间/s | 25 | 30 | 35 |
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | F临界值 | 显著性 |
|---|---|---|---|---|---|---|---|
| 第一色熔体温度 | 0.52 | 2 | 0.26 | 40.293 | 0.00033 | F0.10(2,6)=3.46 F0.05(2,6)=5.14 F0.01(2,6)=10.9 | *** |
| 第一色注射时间 | 0.001 | 2 | 0.0005 | 0.04 | 0.961 | ||
| 第一色充填体积 | 1.388 | 2 | 0.694 | 107.539 | 2×10-5 | *** | |
| 第一色冷却时间 | 0.004 | 2 | 0.002 | 0.298 | 0.753 | ||
| 第一色保压压力 | 0.1 | 2 | 0.05 | 7.735 | 0.022 | ** | |
| 第一色保压时间 | 6.631 | 2 | 3.316 | 513.628 | 1.96×10-7 | **** | |
| 第二色熔体温度 | 1.444 | 2 | 0.722 | 111.808 | 1.78×10-5 | *** | |
| 第二色注射时间 | 0.012 | 2 | 0.006 | 0.906 | 0.453 | ||
| 第二色充填体积 | 0.004 | 2 | 0.002 | 0.301 | 0.751 | ||
| 第二色冷却时间 | 0.004 | 2 | 0.002 | 0.298 | 0.753 | ||
| 第二色保压压力 | 0.563 | 2 | 0.282 | 43.619 | 0.00027 | *** | |
| 第二色保压时间 | 1.388 | 2 | 0.694 | 107.539 | 2×10-5 | *** | |
| 误差 | 0.039 | 6 | 0.006 |
Table 4 Analysis of variance results
| 方差来源 | 平方和 | 自由度 | 均方 | F值 | P值 | F临界值 | 显著性 |
|---|---|---|---|---|---|---|---|
| 第一色熔体温度 | 0.52 | 2 | 0.26 | 40.293 | 0.00033 | F0.10(2,6)=3.46 F0.05(2,6)=5.14 F0.01(2,6)=10.9 | *** |
| 第一色注射时间 | 0.001 | 2 | 0.0005 | 0.04 | 0.961 | ||
| 第一色充填体积 | 1.388 | 2 | 0.694 | 107.539 | 2×10-5 | *** | |
| 第一色冷却时间 | 0.004 | 2 | 0.002 | 0.298 | 0.753 | ||
| 第一色保压压力 | 0.1 | 2 | 0.05 | 7.735 | 0.022 | ** | |
| 第一色保压时间 | 6.631 | 2 | 3.316 | 513.628 | 1.96×10-7 | **** | |
| 第二色熔体温度 | 1.444 | 2 | 0.722 | 111.808 | 1.78×10-5 | *** | |
| 第二色注射时间 | 0.012 | 2 | 0.006 | 0.906 | 0.453 | ||
| 第二色充填体积 | 0.004 | 2 | 0.002 | 0.301 | 0.751 | ||
| 第二色冷却时间 | 0.004 | 2 | 0.002 | 0.298 | 0.753 | ||
| 第二色保压压力 | 0.563 | 2 | 0.282 | 43.619 | 0.00027 | *** | |
| 第二色保压时间 | 1.388 | 2 | 0.694 | 107.539 | 2×10-5 | *** | |
| 误差 | 0.039 | 6 | 0.006 |
| 工艺参数 | 最小值 | 最大值 |
|---|---|---|
| 第一色熔体温度/℃ | 210 | 230 |
| 第一色充填体积/% | 95 | 99 |
| 第一色保压压力/MPa | 70 | 85 |
| 第一色保压时间/s | 7 | 13 |
| 第二色熔体温度/℃ | 240 | 270 |
| 第二色保压压力/MPa | 70 | 85 |
| 第二色保压时间/s | 7 | 13 |
Table 5 Design variable adjustment range
| 工艺参数 | 最小值 | 最大值 |
|---|---|---|
| 第一色熔体温度/℃ | 210 | 230 |
| 第一色充填体积/% | 95 | 99 |
| 第一色保压压力/MPa | 70 | 85 |
| 第一色保压时间/s | 7 | 13 |
| 第二色熔体温度/℃ | 240 | 270 |
| 第二色保压压力/MPa | 70 | 85 |
| 第二色保压时间/s | 7 | 13 |
| 欧几里得距离 | 决策空间状态 | 决策状态设置 |
|---|---|---|
| 0≤di <0.2D | 最近 | 0 |
| 0.2D≤di <0.4D | 较近 | 1 |
| 0.4D≤di <0.6D | 适中 | 2 |
| 0.6D≤di <0.8D | 较远 | 3 |
| 0.8D≤di | 最远 | 4 |
Table 6 State design of decision space for instrument panel process optimization
| 欧几里得距离 | 决策空间状态 | 决策状态设置 |
|---|---|---|
| 0≤di <0.2D | 最近 | 0 |
| 0.2D≤di <0.4D | 较近 | 1 |
| 0.4D≤di <0.6D | 适中 | 2 |
| 0.6D≤di <0.8D | 较远 | 3 |
| 0.8D≤di | 最远 | 4 |
| 适应度比值 | 目标空间状态 | 目标状态设置 |
|---|---|---|
| 0≤sit <0.2 | 最小 | 0 |
| 0.2≤sit <0.4 | 较小 | 1 |
| 0.4≤sit <0.6 | 适中 | 2 |
| 0.6≤sit <0.8 | 较大 | 3 |
| 0.8≤sit | 最大 | 4 |
Table 7 State design of target space for instrument panel process optimization
| 适应度比值 | 目标空间状态 | 目标状态设置 |
|---|---|---|
| 0≤sit <0.2 | 最小 | 0 |
| 0.2≤sit <0.4 | 较小 | 1 |
| 0.4≤sit <0.6 | 适中 | 2 |
| 0.6≤sit <0.8 | 较大 | 3 |
| 0.8≤sit | 最大 | 4 |
| 算法 | 参数设置 |
|---|---|
| PSO | ω=0.5,c1=c2=1.5 |
| GA | γ=0.6,ψ=0.1 |
| SCA | r1=a-t(a/T),r2=[0,2π],r3=[0,2],r4=[0,1] |
| DE | F=0.6,CR=0.1 |
| TEPSO | c1=c2=1.5,ω=[0.9,0.4],μmax=(ub-lb)/4,μmin=0.1 |
Table 8 Parameter settings for TEPSO algorithm and comparative algorithm
| 算法 | 参数设置 |
|---|---|
| PSO | ω=0.5,c1=c2=1.5 |
| GA | γ=0.6,ψ=0.1 |
| SCA | r1=a-t(a/T),r2=[0,2π],r3=[0,2],r4=[0,1] |
| DE | F=0.6,CR=0.1 |
| TEPSO | c1=c2=1.5,ω=[0.9,0.4],μmax=(ub-lb)/4,μmin=0.1 |
| 算法 | 翘曲值/mm |
|---|---|
| PSO | 2.338 |
| GA | 2.39 |
| SCA | 2.285 |
| DE | 2.3 |
| TEPSO | 2.194 |
Table 9 Optimization results of TEPSO algorithm and contrast algorithms
| 算法 | 翘曲值/mm |
|---|---|
| PSO | 2.338 |
| GA | 2.39 |
| SCA | 2.285 |
| DE | 2.3 |
| TEPSO | 2.194 |
| [1] | 魏翔宇. 汽车三色固定侧尾灯灯罩注塑工艺参数多目标优化与模具设计[D]. 镇江: 江苏大学, 2021. |
| Wei X Y. Multi-objective optimization and mold design of injection process parameters for automobile three-color fixed side taillight lampshade[D]. Zhenjiang: Jiangsu University, 2021. | |
| [2] | 张海涛. 双色注塑制品翘曲变形的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
| Zhang H T. Study on warping deformation of two-color injection molded products[D]. Harbin: Harbin Institute of Technology, 2015. | |
| [3] | Chang R Y, Peng A Y, Yang W H, et al. Three-dimensional simulation of multi-shot sequential molding[C]//Society of Plastics Engineers Annual Technical Conference. Boston, USA, 2005: 47-50. |
| [4] | Zheng R, Kennedy P, Phan-Thien N, et al. Thermoviscoelastic simulation of thermally and pressure-induced stresses in injection moulding for the prediction of shrinkage and warpage for fibre-reinforced thermoplastics[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 84(2/3): 159-190. |
| [5] | Huang C T, Chen M C, Yang W L, et al. Investigation on warpage and its behavior in sequential overmolding[C]//Society of Plastics Engineers Annual Technical Conference. Cincinnati, USA, 2007: 760-764. |
| [6] | 王梦寒, 刘晓, 危康, 等. 基于Kriging与GA的双层变模温注射成型收缩控制策略[J]. 化工学报, 2017, 68(1): 391-397. |
| Wang M H, Liu X, Wei K, et al. Strategy of molding shrinkage control for bi-layered RHCM based on Kriging and GA[J]. CIESC Journal, 2017, 68(1): 391-397. | |
| [7] | 巫兴悦. 汽车前大灯双色灯罩注塑成型工艺参数优化[D]. 昆明: 昆明理工大学, 2023. |
| Wu X Y. Optimization of injection molding process parameters for two-color lampshade of automobile headlights[D]. Kunming: Kunming University of Science and Technology, 2023. | |
| [8] | 孟小林, 张继祥, 李又兵, 等. 汽车B柱外饰板双色注塑翘曲变形分析及工艺优化[J]. 工程塑料应用, 2023, 51(2): 54-59. |
| Meng X L, Zhang J X, Li Y B, et al. Warpage deformation analysis and process optimization of automotive B-pillar exterior panel with two-color injection[J]. Engineering Plastics Application, 2023, 51(2): 54-59. | |
| [9] | Pisanu L, Santiago L C, Barbosa J D V, et al. Effect of the process parameters on the adhesive strength of dissimilar polymers obtained by multicomponent injection molding[J]. Polymers, 2021, 13(7): 1039. |
| [10] | Li J, Wang Z C, Xie J, et al. Study on the processes and warpage of double‐injection‐molded parts containing PP recycled materials[J]. Polymer Engineering & Science, 2024, 64(4): 1686-1698. |
| [11] | 楚焱芳. 基于粒子群神经网络的双色注塑工艺参数优化[D]. 南京: 南京理工大学, 2011. |
| Chu Y F. Optimization of process parameters of two-color injection molding based on particle swarm neural network[D]. Nanjing: Nanjing University of Science and Technology, 2011. | |
| [12] | Huang M S, Ke K C, Liu C Y. Cavity pressure-based holding pressure adjustment for enhancing the consistency of injection molding quality[J]. Journal of Applied Polymer Science, 2021, 138(18): 50357. |
| [13] | Bensingh R J, Machavaram R, Boopathy S R, et al. Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO)[J]. Measurement, 2019, 134: 359-374. |
| [14] | Cheng J, Liu Z Y, Tan J R. Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(5): 907-916. |
| [15] | Moayyedian M, Qazani M R C, Amirkhizi P J, et al. Multiple objectives optimization of injection-moulding process for dashboard using soft computing and particle swarm optimization[J]. Scientific Reports, 2024, 14(1): 23767. |
| [16] | Zeng W, Yi G D, Zhang S Y, et al. Multi-objective optimization method of injection molding process parameters based on hierarchical sampling and comprehensive entropy weights[J]. The International Journal of Advanced Manufacturing Technology, 2024, 133(3): 1481-1499. |
| [17] | 薛茂远, 梅益, 唐方艳, 等. 基于GA-ELM及遗传算法的注塑件成型工艺优化[J]. 塑料, 2022, 51(1): 56-61, 66. |
| Xue M Y, Mei Y, Tang F Y, et al. Optimization of injection molding process based on GA-ELM and genetic algorithm[J]. Plastics, 2022, 51(1): 56-61, 66. | |
| [18] | 印磊, 苏小平, 潘杰. 基于NCGA的汽车外饰件注塑成型工艺参数多目标优化[J]. 塑料工业, 2024, 52(8): 95-100. |
| Yin L, Su X P, Pan J. Multi objective optimization of injection molding process parameters for automotive exterior parts based on NCGA[J]. China Plastics Industry, 2024, 52(8): 95-100. | |
| [19] | 余佳欣. 基于迁移学习的薄壁类零件注塑工艺优化研究[D]. 绵阳: 西南科技大学, 2023. |
| Yu J X. Study on injection process optimization of thin-walled parts based on transfer learning[D]. Mianyang: Southwest University of Science and Technology, 2023. | |
| [20] | 孙显俊. 聚丙烯及其复合材料注塑件翘曲变形数值模拟与实验研究[D]. 南京: 南京航空航天大学, 2015. |
| Sun X J. Numerical simulation and experimental study on warping deformation of polypropylene and its composite injection parts[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. | |
| [21] | 傅建钢, 赵朋, 傅建中, 等. 电器仪表外壳注塑模具设计[J]. 塑料科技, 2024, 52(2): 112-115. |
| Fu J G, Zhao P, Fu J Z, et al. Design of injection mold for electrical instrument shell[J]. Plastics Science and Technology, 2024, 52(2): 112-115. | |
| [22] | Chang R Y, Tsaur B D. Experimental and theoretical studies of shrinkage, warpage, and sink marks of crystalline polymer injection molded parts[J]. Polymer Engineering & Science, 1995, 35(15): 1222-1230. |
| [23] | 张君. 汽车位置灯厚壁Logo饰件注塑模具设计及多目标工艺参数优化[D]. 镇江: 江苏大学, 2023. |
| Zhang J. Design of injection mold and optimization of multi-objective process parameters for thick wall Logo decoration of automobile position[D]. Zhenjiang: Jiangsu University, 2023. | |
| [24] | 朱宏峰. 随形冷却对注塑成型制品翘曲变形影响研究[D]. 南昌: 南昌大学, 2014. |
| Zhu H F. Study on the influence of conformal cooling on warping deformation of injection molded products[D]. Nanchang: Nanchang University, 2014. | |
| [25] | 傅超. 基于BP-NSGA Ⅱ的双色贯穿灯注塑工艺参数多目标优化与模具设计[D]. 镇江: 江苏大学, 2023. |
| Fu C. Multi-objective optimization of injection process parameters and mold design of two-color through lamp based on BP-NSGA Ⅱ[D]. Zhenjiang: Jiangsu University, 2023. | |
| [26] | Zhao N Y, Lian J Y, Wang P F, et al. Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1/2): 85-101. |
| [27] | Kitayama S. Process parameters optimization in plastic injection molding using metamodel-based optimization: a comprehensive review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(11): 7117-7145. |
| [28] | 欧阳宇. 进气歧管注塑成型工艺参数及进气性能优化研究[D]. 昆明: 昆明理工大学, 2023. |
| Ouyang Y. Study on optimization of injection molding process parameters and intake performance of intake manifold[D]. Kunming: Kunming University of Science and Technology, 2023. | |
| [29] | Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995: 39-43. |
| [30] | Watkins C J C H, Dayan P. Q-learning[J]. Machine Learning, 1992, 8: 279-292. |
| [31] | Sutton R S, Barto A G. Reinforcement learning: an introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054. |
| [32] | 罗逸轩, 刘建华, 胡任远, 等. 融合经验共享Q学习的粒子群优化算法[J]. 计算机科学与探索, 2022, 16(9): 2151-2162. |
| Luo Y X, Liu J H, Hu R Y, et al. Particle swarm optimization combined with Q-learning of experience sharing strategy[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2151-2162. | |
| [33] | 张程, 邱炳林, 刘佳静, 等. 基于社会学习的粒子群优化算法的电力系统稳定器参数协调优化设计[J]. 电工电能新技术, 2022, 41(4): 24-33. |
| Zhang C, Qiu B L, Liu J J, et al. Parameters coordinated optimization design of power system stabilizer by social learning based particle swarm optimization algorithm[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(4): 24-33. | |
| [34] | Jiyue E, Liu J L, Wan Z. A novel adaptive algorithm of particle swarm optimization based on the human social learning intelligence[J]. Swarm and Evolutionary Computation, 2023, 80: 101336. |
| [35] | Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995: 1942-1948. |
| [36] | Holland J H. Genetic algorithms[J]. Scientific American, 1992, 267(1): 66-73. |
| [37] | Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. |
| [38] | Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
| [1] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [2] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [3] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [4] | Wenfeng ZHANG, Wei GUO, Xinyu ZHANG, Haomin CAO, Guoliang DING. Model development and software implementation of the aluminum tube and aluminum fin heat exchanger [J]. CIESC Journal, 2025, 76(S1): 84-92. |
| [5] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [6] | Ziqing ZANG, Xiuzhen LI, Yingying TAN, Xiaoqing LIU. Investigation on effect of fractionation on performance of two-stage separation-based auto-cascade refrigeration cycle [J]. CIESC Journal, 2025, 76(S1): 17-25. |
| [7] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [8] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [9] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [10] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [11] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [12] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [13] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [14] | Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles [J]. CIESC Journal, 2025, 76(S1): 318-325. |
| [15] | Chengyun WU, Haoran SUN. Performance simulation and fuel penalty investigation of civil aircraft air conditioning systems [J]. CIESC Journal, 2025, 76(S1): 351-359. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||