CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2781-2790.DOI: 10.11949/0438-1157.20241453
• Process system engineering • Previous Articles Next Articles
Hanchuan ZHANG1(
), Chao SHANG1(
), Wenxiang LYU1, Dexiang HUANG1, Yaning ZHANG2
Received:2024-12-16
Revised:2025-01-19
Online:2025-07-09
Published:2025-06-25
Contact:
Chao SHANG
张涵川1(
), 尚超1(
), 吕文祥1, 黄德先1, 张亚宁2
通讯作者:
尚超
作者简介:张涵川(2001—),男,博士研究生,zhanghc24@mails.tsinghua.edu.cn
基金资助:CLC Number:
Hanchuan ZHANG, Chao SHANG, Wenxiang LYU, Dexiang HUANG, Yaning ZHANG. Operating conditions pattern recognition and yield prediction for FCCU based on unsupervised time series clustering[J]. CIESC Journal, 2025, 76(6): 2781-2790.
张涵川, 尚超, 吕文祥, 黄德先, 张亚宁. 基于无监督时序聚类的催化裂化装置工况划分识别与产率预测方法[J]. 化工学报, 2025, 76(6): 2781-2790.
Add to citation manager EndNote|Ris|BibTeX
| 模型 | 汽油产率预测MAPE | 柴油产率预测MAPE | ||
|---|---|---|---|---|
| 总训练集 | 总测试集 | 总训练集 | 总测试集 | |
| OPM | 7.59% | 7.66% | 4.72% | 4.71% |
| MPM | 2.89% | 2.98% | 2.68% | 2.73% |
Table 1 Comparison of prediction MAPE between MPM and OPM(overall dataset)
| 模型 | 汽油产率预测MAPE | 柴油产率预测MAPE | ||
|---|---|---|---|---|
| 总训练集 | 总测试集 | 总训练集 | 总测试集 | |
| OPM | 7.59% | 7.66% | 4.72% | 4.71% |
| MPM | 2.89% | 2.98% | 2.68% | 2.73% |
| 模型 | 汽油产率预测MAPE | 柴油产率预测MAPE | ||
|---|---|---|---|---|
| 训练集1 | 测试集1 | 训练集1 | 测试集1 | |
| OPM | 7.84% | 7.86% | 3.39% | 3.35% |
| MPM1 | 4.11% | 4.20% | 2.73% | 2.77% |
| 训练集2 | 测试集2 | 训练集2 | 测试集2 | |
| OPM | 4.24% | 4.20% | 5.08% | 5.35% |
| MPM2 | 1.87% | 1.92% | 3.74% | 4.01% |
| 训练集3 | 测试集3 | 训练集3 | 测试集3 | |
| OPM | 8.46% | 8.18% | 15.30% | 15.41% |
| MPM3 | 1.35% | 1.36% | 2.33% | 2.52% |
| 训练集4 | 测试集4 | 训练集4 | 测试集4 | |
| OPM | 4.27% | 4.46% | 3.59% | 3.42% |
| MPM4 | 2.37% | 2.43% | 2.42% | 2.20% |
| 训练集5 | 测试集5 | 训练集5 | 测试集5 | |
| OPM | 8.09% | 8.57% | 5.52% | 5.31% |
| MPM5 | 3.80% | 3.57% | 3.74% | 3.68% |
| 训练集6 | 测试集6 | 训练集6 | 测试集6 | |
| OPM | 14.05% | 14.86% | 6.56% | 6.55% |
| MPM6 | 3.41% | 3.68% | 1.66% | 1.68% |
| 训练集7 | 测试集7 | 训练集7 | 测试集7 | |
| OPM | 8.99% | 9.11% | 4.37% | 4.22% |
| MPM7 | 1.14% | 1.01% | 1.85% | 1.77% |
| 训练集8 | 测试集8 | 训练集8 | 测试集8 | |
| OPM | 7.29% | 7.15% | 4.92% | 4.90% |
| MPM8 | 3.02% | 3.35% | 2.48% | 2.54% |
Table 2 Comparison of prediction MAPE between MPM and OPM(classification dataset)
| 模型 | 汽油产率预测MAPE | 柴油产率预测MAPE | ||
|---|---|---|---|---|
| 训练集1 | 测试集1 | 训练集1 | 测试集1 | |
| OPM | 7.84% | 7.86% | 3.39% | 3.35% |
| MPM1 | 4.11% | 4.20% | 2.73% | 2.77% |
| 训练集2 | 测试集2 | 训练集2 | 测试集2 | |
| OPM | 4.24% | 4.20% | 5.08% | 5.35% |
| MPM2 | 1.87% | 1.92% | 3.74% | 4.01% |
| 训练集3 | 测试集3 | 训练集3 | 测试集3 | |
| OPM | 8.46% | 8.18% | 15.30% | 15.41% |
| MPM3 | 1.35% | 1.36% | 2.33% | 2.52% |
| 训练集4 | 测试集4 | 训练集4 | 测试集4 | |
| OPM | 4.27% | 4.46% | 3.59% | 3.42% |
| MPM4 | 2.37% | 2.43% | 2.42% | 2.20% |
| 训练集5 | 测试集5 | 训练集5 | 测试集5 | |
| OPM | 8.09% | 8.57% | 5.52% | 5.31% |
| MPM5 | 3.80% | 3.57% | 3.74% | 3.68% |
| 训练集6 | 测试集6 | 训练集6 | 测试集6 | |
| OPM | 14.05% | 14.86% | 6.56% | 6.55% |
| MPM6 | 3.41% | 3.68% | 1.66% | 1.68% |
| 训练集7 | 测试集7 | 训练集7 | 测试集7 | |
| OPM | 8.99% | 9.11% | 4.37% | 4.22% |
| MPM7 | 1.14% | 1.01% | 1.85% | 1.77% |
| 训练集8 | 测试集8 | 训练集8 | 测试集8 | |
| OPM | 7.29% | 7.15% | 4.92% | 4.90% |
| MPM8 | 3.02% | 3.35% | 2.48% | 2.54% |
| [1] | 郑远扬, 高少立, 袁璞. 催化裂化装置的动态模型: Ⅰ. 提升管反应器的动态模型和动力学参数的估计[J]. 石油炼制与化工, 1986, 17(2): 23-30. |
| Zheng Y Y, Gao S L, Yuan P. Dynamic model of catalytic cracking unit: Ⅰ. Dynamic model of riser reactor and estimation of kinetic parameters[J]. Petroleum Processing and Petrochemicals, 1986, 17(2): 23-30. | |
| [2] | 郑远扬, 高少立. 催化裂化装置的动态模型(Ⅱ)提升管反应器的集中参数模型[J]. 石油炼制与化工, 1986, 17(4): 67-71. |
| Zheng Y Y, Gao S L. Dynamic model of catalytic cracking unit (Ⅱ) lumped parameter model of riser reactor[J]. Petroleum Processing and Petrochemicals, 1986, 17(4): 67-71. | |
| [3] | 郑远扬, 高少立. 催化裂化装置的动态模型: Ⅲ. 两段再生器的动态模型和动力学参数估计[J]. 石油炼制与化工, 1986, 17(5): 45-49. |
| Zheng Y Y, Gao S L. Dynamic model of catalytic cracking unit Ⅲ. Dynamic model of two-stage regenerator and estimation of dynamic parameters[J]. Petroleum Processing and Petrochemicals, 1986, 17(5): 45-49. | |
| [4] | Zheng Y Y. Dynamic modeling and simulation of a catalytic cracking unit[J]. Computers & Chemical Engineering, 1994, 18(1): 39-44. |
| [5] | 陈玉石. FCCU反应再生部分动态建模与仿真系统研究[D]. 厦门: 厦门大学, 2007. |
| Chen Y S. Research on dynamic modeling and simulation system of FCCU reaction regeneration part[D]. Xiamen: Xiamen University, 2007. | |
| [6] | 邵帅. R2R型催化裂化装置反-再系统的建模与动态仿真[D]. 北京: 北京化工大学, 2008. |
| Shao S. Modeling and dynamic simulation of reaction-regeneration system in R2R catalytic cracking unit[D]. Beijing: Beijing University of Chemical Technology, 2008. | |
| [7] | Radu S, Ciuparu D. Modelling and simulation of an industrial fluid catalytic cracking unit[J]. Revista de Chimie, 2014, 65(1): 113-119. |
| [8] | Singh B, Sahu S, Dimri N, et al. Seventeen-lump model for the simulation of an industrial fluid catalytic cracking unit (FCCU)[J]. Sādhanā, 2017, 42(11): 1965-1978. |
| [9] | Orazbayev B, Kozhakhmetova D, Wójtowicz R, et al. Modeling of a catalytic cracking in the gasoline production installation with a fuzzy environment[J]. Energies, 2020, 13(18): 4736. |
| [10] | Ni P, Liu B, He G. An online optimization strategy for a fluid catalytic cracking process using a case-based reasoning method based on big data technology[J]. RSC Advances, 2021, 11(46): 28557-28564. |
| [11] | Li T Y, Long J, Zhao L, et al. A bilevel data-driven framework for robust optimization under uncertainty-applied to fluid catalytic cracking unit[J]. Computers & Chemical Engineering, 2022, 166: 107989. |
| [12] | Hong J, Tian W D. Prediction in catalytic cracking process based on swarm intelligence algorithm optimization of LSTM[J]. Processes, 2023, 11(5): 1454. |
| [13] | Liu N, Zhu C M, Zhang M X, et al. A multiscale adaptive framework based on convolutional neural network: application to fluid catalytic cracking product yield prediction[J]. Petroleum Science, 2024, 21(4): 2849-2869. |
| [14] | Zhou C, Liu Q Y, Huang D X, et al. Inferential estimation of kerosene dry point in refineries with varying crudes[J]. Journal of Process Control, 2012, 22(6): 1122-1126. |
| [15] | Gao X Y, Shang C, Jiang Y H, et al. Refinery scheduling with varying crude: a deep belief network classification and multimodel approach[J]. AIChE Journal, 2014, 60(7): 2525-2532. |
| [16] | Das S, Nayak M, Senapati M R. Improving time series prediction with deep belief network[J]. Journal of the Institution of Engineers (India): Series B, 2023, 104(5): 1103-1118. |
| [17] | Hallac D, Vare S, Boyd S, et al. Toeplitz inverse covariance-based clustering of multivariate time series data[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 13-17, 2017, Halifax, NS, Canada. ACM, 2017: 215-223. |
| [18] | Li H H, Liu J X, Yang Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering[J]. Information Sciences, 2020, 534: 97-116. |
| [19] | Ienco D, Interdonato R. Deep multivariate time series embedding clustering via attentive-gated autoencoder[C]//PAKDD 2020, May 11-14, 2020, Singapore, Springer International Publishing, 2020: 318-329. |
| [20] | Huang H, Shah T, Yoo S. Deep time series sketching and its application on industrial time series clustering[C]//2022 IEEE International Conference on Big Data (Big Data), December 17-20, 2022, Osaka, Japan. IEEE, 2022: 1997-2006. |
| [21] | Ienco D, Interdonato R. Deep semi-supervised clustering for multi-variate time-series[J]. Neurocomputing, 2023, 516: 36-47. |
| [22] | Ismail Fawaz H, Forestier G, Weber J, et al. Deep learning for time series classification: a review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. |
| [23] | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009. |
| Xu C M, Yang C H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009. | |
| [24] | Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques[M]. Cambridge, Massachusetts: The MIT Press, 2009. |
| [25] | Lauritzen S L. Graphical Models[M]. Oxford: Clarendon Press, 1996. |
| [26] | Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso[J]. Biostatistics, 2008, 9(3): 432-441. |
| [27] | Stephen B, Parikh Neal, Eric C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1):1-122. |
| [28] | 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32-42. |
| Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32-42. | |
| [29] | Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425. |
| [30] | Gao T Y, Luo H, Yin S, et al. A recursive modified partial least square aided data-driven predictive control with application to continuous stirred tank heater[J]. Journal of Process Control, 2020, 89: 108-118. |
| [1] | Min XIONG, Dongmei LIU, Zhichao WANG, Li ZHOU, Xu JI. Optimization and adjustment of operating parameters for green ammonia production under variable load conditions [J]. CIESC Journal, 2025, 76(6): 2791-2801. |
| [2] | Fazheng WANG, Lin SUI, Weili XIONG. TTPA-LSTM soft sensor modeling for multi-sampling rate data [J]. CIESC Journal, 2025, 76(4): 1635-1646. |
| [3] | Dafen WANG, Lili TANG, Xinyan ZHANG, Chunyu NIE, Mingzhu LI, Jing WU. Multi-output tri-training heterogeneous soft sensor modeling based on time difference [J]. CIESC Journal, 2025, 76(3): 1143-1155. |
| [4] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
| [5] | Jianwen ZHANG, Tingsheng ZHAO, Pingyu WAN, Qianlin WANG, Zhan DOU, Bo XU. Discussion on integrated security control in process industry [J]. CIESC Journal, 2024, 75(6): 2375-2384. |
| [6] | Yuhang HE, Dan XIE, Yangcheng LYU. Research progress of cationic polymerization in microreactor [J]. CIESC Journal, 2024, 75(4): 1302-1316. |
| [7] | Bingyan SUN, Haiqing WANG, Yutao ZHANG, Sijie WANG. Research on time-varying competitive failure of safety interlock system actuators with non-constant failure rate [J]. CIESC Journal, 2024, 75(12): 4646-4653. |
| [8] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
| [9] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
| [10] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
| [11] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
| [12] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
| [13] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
| [14] | Xiangyu LI, Lin SUI, Junxia MA, Weili XIONG. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting [J]. CIESC Journal, 2023, 74(11): 4622-4633. |
| [15] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||