CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 3915-3931.DOI: 10.11949/0438-1157.20250005
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaojiang LIANG(
), Weiwei CHEN, Jianan LUO, Haotian FEI, Xuelei YE, Wenhao LI, Yong NIE(
)
Received:2025-01-02
Revised:2025-03-04
Online:2025-09-17
Published:2025-08-25
Contact:
Yong NIE
梁晓江(
), 陈薇薇, 罗佳南, 费浩天, 叶雪蕾, 李文豪, 聂勇(
)
通讯作者:
聂勇
作者简介:梁晓江(1988—),男,副教授,lxj0824@zjut.edu.cn
基金资助:CLC Number:
Xiaojiang LIANG, Weiwei CHEN, Jianan LUO, Haotian FEI, Xuelei YE, Wenhao LI, Yong NIE. Dispersion characteristics of charged bubbles in an electric dispersion tubular packed bed[J]. CIESC Journal, 2025, 76(8): 3915-3931.
梁晓江, 陈薇薇, 罗佳南, 费浩天, 叶雪蕾, 李文豪, 聂勇. 电分散管式填充床中荷电气泡的分散特性研究[J]. 化工学报, 2025, 76(8): 3915-3931.
Add to citation manager EndNote|Ris|BibTeX
| 材料 | 密度/ (kg/m3) | 相对介电常数 | 表面张力/ (N/m) | 动力黏度/(mPa∙s) | 电导率/ (S/m) |
|---|---|---|---|---|---|
| 高纯氮气 | 1.18 | 1.00 | — | 1.79 × 10-2 | <10-15 |
| 生物柴油 | 879 | 1.98 | 3.20 × 10-2 | 5.21 | 2.00 × 10-8 |
Table 1 Physical properties of biodiesel and nitrogen (25℃)
| 材料 | 密度/ (kg/m3) | 相对介电常数 | 表面张力/ (N/m) | 动力黏度/(mPa∙s) | 电导率/ (S/m) |
|---|---|---|---|---|---|
| 高纯氮气 | 1.18 | 1.00 | — | 1.79 × 10-2 | <10-15 |
| 生物柴油 | 879 | 1.98 | 3.20 × 10-2 | 5.21 | 2.00 × 10-8 |
| 填料 | 材料 | 比表面积/ (m2/m3) | 尺寸/mm | 空隙率/% |
|---|---|---|---|---|
| 金属西塔环 | 304丝网 | 1380 | ϕ3.0×3.0 | 94.9 |
| 陶瓷拉西环 | 陶瓷 | 900 | ϕ3.0×3.0×1.0 | 46.5 |
| 玻璃圆珠 | 玻璃 | 2000 | ϕ3.0 | 41.9 |
Table 2 Physical properties of packing
| 填料 | 材料 | 比表面积/ (m2/m3) | 尺寸/mm | 空隙率/% |
|---|---|---|---|---|
| 金属西塔环 | 304丝网 | 1380 | ϕ3.0×3.0 | 94.9 |
| 陶瓷拉西环 | 陶瓷 | 900 | ϕ3.0×3.0×1.0 | 46.5 |
| 玻璃圆珠 | 玻璃 | 2000 | ϕ3.0 | 41.9 |
Fig.8 Comparison of gas dispersion characteristics of electric dispersion empty tube device and electric dispersion tubular packed bed at different electric field strength (uL=0.033 m/s, uG=1.062 m/s)
Fig.9 Comparison of gas dispersion characteristics of electric dispersion empty tubular packed bed and electric dispersion tubular packed bed at different electric field strength (uL=0.033 m/s, uG=1.062 m/s)
Fig.10 Particle size distribution of charged bubble cluster before and after packing under three characteristic with and photographs with electric field strengths (uL=0.033 m/s, uG=1.062 m/s)
Fig.11 Characteristic changes of charged microbubble populations before and after packing at various electric field strength (uL=0.033 m/s, uG=1.062 m/s)
Fig.12 Plot of gas dispersion characteristics of electric dispersion tubular packed bed with different characteristic electric field strengths (uL=0.033 m/s, uG=1.062 m/s)
Fig.13 Particle size distribution of charged bubble cluster before and after packing at three liquid flow rates and photographed (E=7.58 × 103 kV/m, uG=1.062 m/s)
Fig.16 Particle size distribution of charged bubble groups before and after packing at three gas flow rates and photographed (E=7.58 × 103 kV/m, uL=0.033 m/s)
Fig.18 Plot of gas dispersion characteristics of electric dispersion tubular packed bed for three orifice gas flow rates (uL=0.033 m/s, E=7.58 × 103 kV/m)
Fig.19 Particle size distribution of charged bubbles before and after passing through the three kinds of fillers and photographed images (uG=1.062 m/s, uL=0.033 m/s, E=7.58 × 103 kV/m)
Fig.21 Plot of the overall gas dispersion characteristics of electric dispersion tubular packed bed with three types filler (uG=1.062 m/s, uL=0.033 m/s, E=7.58 × 103 kV/m)
| [1] | 于嘉朋, 徐娜, 张玮, 等. 微反应器内气液磺化反应收率和能耗建模及多目标优化[J]. 化工学报, 2024, 75(10): 3681-3690. |
| Yu J P, Xu N, Zhang W, et al. Modeling and multi-objective optimization of yield and energy consumption of gas-liquid sulfonation reaction in microreactor[J]. CIESC Journal, 2024, 75(10): 3681-3690. | |
| [2] | 田洪舟, 杨高东, 杨国强, 等. 微界面强化重油浆态床低压加氢的传质基础[J]. 化工学报, 2020, 71(11): 4927-4935. |
| Tian H Z, Yang G D, Yang G Q, et al. Mass transfer basis of low-pressure hydrogenation for heavy oil in microinterface-intensified slurry-bed reactor[J]. CIESC Journal, 2020, 71(11): 4927-4935. | |
| [3] | Leonard C, Ferrasse J H, Boutin O, et al. Bubble column reactors for high pressures and high temperatures operation[J]. Chemical Engineering Research and Design, 2015, 100: 391-421. |
| [4] | Kantarci N, Borak F, Ulgen K O. Bubble column reactors[J]. Process Biochemistry, 2005, 40(7): 2263-2283. |
| [5] | Hernandez-Alvarado F, Kalaga D V, Turney D, et al. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion[J]. Chemical Engineering Science, 2017, 168: 403-413. |
| [6] | Huang J, Sun L C, Liu H T, et al. A review on bubble generation and transportation in Venturi-type bubble generators[J]. Experimental and Computational Multiphase Flow, 2020, 2(3): 123-134. |
| [7] | Maluta F, Alberini F, Paglianti A, et al. Hydrodynamics, power consumption and bubble size distribution in gas-liquid stirred tanks[J]. Chemical Engineering Research and Design, 2023, 194: 582-596. |
| [8] | 崔怡洲, 李成祥, 翟霖晓, 等. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2024, 75(1): 197-210. |
| Cui Y Z, Li C X, Zhai L X, et al. Comparative study on the flow and mass transfer characteristics of sub-millimeter bubbles and conventional bubbles in gas-liquid two-phase flow[J]. CIESC Journal, 2024, 75(1): 197-210. | |
| [9] | Kim Y B, Lee H S, Francis L, et al. Innovative swirling flow-type microbubble generator for multi-stage DCMD desalination system: focus on the two-phase flow pattern, bubble size distribution, and its effect on MD performance[J]. Journal of Membrane Science, 2019, 588: 117197. |
| [10] | 黄正梁, 郭晓云, 帅云, 等. 射流鼓泡反应器内气液分散状态检测[J]. 化工学报, 2019, 70(10): 3906-3913. |
| Huang Z L, Guo X Y, Shuai Y, et al. Detection of gas-liquid dispersion in jet bubbling reactor[J]. CIESC Journal, 2019, 70(10): 3906-3913. | |
| [11] | 张怡青, 陈家庆, 丁国栋, 等. 溶气释放式微细气泡发生技术的溶气机理与设备研究进展[J]. 北京石油化工学院学报, 2022, 30(1): 13-25, 30. |
| Zhang Y Q, Chen J Q, Ding G D, et al. Research progress on air-dissolving mechanism and device structure of pressurized dissolution type microbubble generator[J]. Journal of Beijing Institute of Petrochemical Technology, 2022, 30(1): 13-25, 30. | |
| [12] | 陈日志, 姜红, 范益群, 等. 膜分散技术及其强化反应过程的研究进展[J]. 化工进展, 2020, 39(12): 4812-4822. |
| Chen R Z, Jiang H, Fan Y Q, et al. Perspective on membrane dispersion technology and its enhanced reaction processes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4812-4822. | |
| [13] | Bouaifi M, Hebrard G, Bastoul D, et al. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(2): 97-111. |
| [14] | Zhao W D, Yao J W, Zhang X Y, et al. Review on the progress of the first-generation biodiesel hydrogenation and upgrading[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(21): 2704-2714. |
| [15] | Ball J C, Anderson J E, Sears V A, et al. Model reactions involving ester functional groups during thermo-oxidative degradation of biodiesel[J]. Journal of the American Oil Chemists' Society, 2019, 96(10): 1153-1161. |
| [16] | He Y, Zhang T, Lv L, et al. Application of microbubbles in chemistry, wastewater treatment, medicine, cosmetics, and agriculture: a review[J]. Environmental Chemistry Letters, 2023, 21(6): 3245-3271. |
| [17] | Babaeva N Y, Tereshonok D V, Naidis G V. Initiation of breakdown in bubbles immersed in liquids: pre-existed charges versus bubble size[J]. Journal of Physics D: Applied Physics, 2015, 48(35): 355201. |
| [18] | Ogata S, Tan K, Nishijima K, et al. Development of improved bubble disruption and dispersion technique by an applied electric field method[J]. AIChE Journal, 1985, 31(1): 62-69. |
| [19] | Rahmat A, Tofighi N, Yildiz M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method[J]. International Journal of Heat and Fluid Flow, 2016, 62: 313-323. |
| [20] | Pandey V, Dalal A, Biswas G. Bubble formation in film boiling including electrohydrodynamic forces[J]. Procedia IUTAM, 2015, 15: 86-94. |
| [21] | Akira Y, Hiroshi M. Augmentation of convective and boiling heat transfer by applying an electro-hydrodynamical liquid jet[J]. International Journal of Heat and Mass Transfer, 1988, 31(2): 407-417. |
| [22] | Dong W, Li R Y, Yu H L, et al. An investigation of behaviours of a single bubble in a uniform electric field[J]. Experimental Thermal and Fluid Science, 2006, 30(6): 579-586. |
| [23] | Zu Y Q, Yan Y Y. A numerical investigation of electrohydrodynamic (EHD) effects on bubble deformation under pseudo-nucleate boiling conditions[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 761-767. |
| [24] | Liu Z, Herman C, Mewes D. Visualization of bubble detachment and coalescence under the influence of a nonuniform electric field[J]. Experimental Thermal and Fluid Science, 2006, 31(2): 151-163. |
| [25] | Zhang W, Wang J F, Li B, et al. Experimental investigation on bubble coalescence regimes under non-uniform electric field[J]. Chemical Engineering Journal, 2021, 417: 127982. |
| [26] | Wang J F, Han J F, Wu T Y, et al. Bubble deformation and breakup in a non-uniform electric field[J]. Chemical Engineering Science, 2024, 287: 119741. |
| [27] | Zuo L, Wang J F, Mei D Q, et al. Atomization and combustion characteristics of a biodiesel-ethanol fuel droplet in a uniform DC electric field[J]. Physics of Fluids, 2023, 35(1): 013303. |
| [28] | Zhang W, Wang J F, Wang Z T, et al. Review of bubble dynamics on charged liquid-gas flow[J]. Physics of Fluids, 2023, 35(2): 021302. |
| [29] | Li B, Wang Z T, Vivacqua V, et al. Drop-interface electrocoalescence mode transition under a direct current electric field[J]. Chemical Engineering Science, 2020, 213: 115360. |
| [30] | Wang D B, Wang J F, Yongphet P, et al. Experimental study on electric-field-induced droplet generation and breakup in an immiscible medium[J]. Experiments in Fluids, 2020, 61(3): 78. |
| [31] | Liang X J, Luo J N, Chen W W, et al. Characteristics of bubble dispersion under nonuniform electric field in an up-flow bubbling system: from charged bubble to charged bubble cluster[J]. Industrial & Engineering Chemistry Research, 2024, 63(44): 19289-19299. |
| [32] | Hijano A J, Loscertales I G, Ibáñez S E, et al. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(1): 013011. |
| [33] | Landau L D, Lifshitz E M, Sykes J B, et al. Electrodynamics of continuous media[J]. Physics Today, 1961, 14(10): 48-50. |
| [34] | Di Marco P, Grassi W, Memoli G, et al. Influence of electric field on single gas-bubble growth and detachment in microgravity[J]. International Journal of Multiphase Flow, 2003, 29(4): 559-578. |
| [35] | Zaghdoudi M C, Lallemand M. Study of the behaviour of a bubble in an electric field: steady shape and local fluid motion[J]. International Journal of Thermal Sciences, 2000, 39(1): 39-52. |
| [36] | Zhou Y T, Li B, Zhang M Y, et al. Effect of dielectrophoresis on the coalescence of binary droplets under a non-uniform electric field[J]. Chemical Engineering Science, 2020, 224: 115739. |
| [37] | Di Marco P, Kurimoto R, Saccone G, et al. Bubble shape under the action of electric forces[J]. Experimental Thermal and Fluid Science, 2013, 49: 160-168. |
| [38] | Zhang W, Wang J F, Li B, et al. EHD effects on periodic bubble formation and coalescence in ethanol under non-uniform electric field[J]. Chemical Engineering Science, 2020, 215: 115451. |
| [39] | Parmar R, Majumder S K. Microbubble generation and microbubble-aided transport process intensification: a state-of-the-art report[J]. Chemical Engineering and Processing: Process Intensification, 2013, 64: 79-97. |
| [40] | Muilwijk C, Van den Akker H E A. Experimental investigation on the bubble formation from needles with and without liquid co-flow[J]. Chemical Engineering Science, 2019, 202: 318-335. |
| [41] | Baltussen M W, Kuipers J A M, Deen N G. A numerical study of cutting bubbles with a wire mesh[J]. Chemical Engineering Science, 2017, 165: 25-32. |
| [42] | Jain D, Lau Y M, Kuipers J A M, et al. Discrete bubble modeling for a micro-structured bubble column[J]. Chemical Engineering Science, 2013, 100: 496-505. |
| [43] | Chen G H, Zhang Z C, Gao F, et al. Experimental studies of bubble cutting in a lab-scale micro-structured bubble column with different liquid viscosity[J]. Korean Journal of Chemical Engineering, 2022, 39(8): 2044-2054. |
| [1] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [2] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [3] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [4] | Wei LI, Hao CHEN, Gang KE, Xiaosheng HUANG, Chengjiao LI, Hang GUO, Fang YE. Simulation of the fresh air system in the simulation platform of the high-altitude environmental adaptability laboratory [J]. CIESC Journal, 2025, 76(S1): 360-369. |
| [5] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [6] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [7] | Zicheng ZHU, Yunpeng JIAO, Mengxi LIU, Jianhua CHEN. Simulation analysis on effects of spargers and baffles in three-phase fluidized bed [J]. CIESC Journal, 2025, 76(8): 3873-3884. |
| [8] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [9] | Pengguo XU, Ziheng MENG, Ganyu ZHU, Huiquan LI, Chenye WANG, Zhenhua SUN, Guocai TIAN. Study on deep carbonization process and kinetics of crude lithium carbonate with CO2 microbubbles [J]. CIESC Journal, 2025, 76(7): 3325-3338. |
| [10] | Jinjiang WANG, Zhenjie LU, Weizheng AN, Fengyun YANG, Xiaogang QIN. Research and prospect of early warning and diagnosis technology for ORC power generation system process [J]. CIESC Journal, 2025, 76(7): 3137-3152. |
| [11] | Changqiu HE, Jiameng TIAN, Yiqi CHEN, Yuchen ZHU, Xin LIU, Hai WANG, Zhentao WANG, Junfeng WANG, Zhifu ZHOU, Bin CHEN. Synergistic heat transfer enhancement characteristics due to electric field and macro-structured surface during thin film boiling [J]. CIESC Journal, 2025, 76(6): 2589-2602. |
| [12] | Lina ZHU, Maodong MIAO, Sai JIN, Zhonggai ZHAO, Fuxin SUN, Guiyang SHI, Fei LIU. Optimal control for neutralization process of citric acid through tricalcium reaction based on reinforcement learning algorithm [J]. CIESC Journal, 2025, 76(6): 2838-2847. |
| [13] | Min XIONG, Dongmei LIU, Zhichao WANG, Li ZHOU, Xu JI. Optimization and adjustment of operating parameters for green ammonia production under variable load conditions [J]. CIESC Journal, 2025, 76(6): 2791-2801. |
| [14] | Hanchuan ZHANG, Chao SHANG, Wenxiang LYU, Dexiang HUANG, Yaning ZHANG. Operating conditions pattern recognition and yield prediction for FCCU based on unsupervised time series clustering [J]. CIESC Journal, 2025, 76(6): 2781-2790. |
| [15] | Haohao ZHANG, Li GUO, Xinyi LI, Jinyi CHEN, Chao HUA, Ping LU. Research progress on optimal design and dynamic control of dividing wall column [J]. CIESC Journal, 2025, 76(6): 2434-2450. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||