CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6387-6397.DOI: 10.11949/0438-1157.20250281
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yuejun LI1(
), Tieping CAO1,2(
), Dawei SUN2
Received:2025-03-20
Revised:2025-05-17
Online:2026-01-23
Published:2025-12-31
Contact:
Tieping CAO
通讯作者:
曹铁平
作者简介:李跃军(1964—),男,硕士,教授,bc640628-163.com
基金资助:CLC Number:
Yuejun LI, Tieping CAO, Dawei SUN. Bi nanoparticles loading modulates interfacial charge separation in CeO2/PANI S-scheme heterojunction for enhanced CO2 photoreduction performance[J]. CIESC Journal, 2025, 76(12): 6387-6397.
李跃军, 曹铁平, 孙大伟. Bi调控S型异质结CeO2/PANI界面电荷分离增强CO2光还原性能[J]. 化工学报, 2025, 76(12): 6387-6397.
Add to citation manager EndNote|Ris|BibTeX
| 催化剂 | 生成速率/(μmol·g-1·h-1) | ||||
|---|---|---|---|---|---|
| CO | CH4 | O2 | C2H4 | C2H6 | |
| CeO2 | — | — | 2.18 | — | — |
| PANI | 0.48 | 0.54 | 1.42 | — | — |
| Bi/PANI | 2.75 | 2.23 | 8.86 | 0.22 | 0.13 |
| CeO2/PANI | 7.62 | 3.15 | 10.36 | 0.48 | 0.31 |
| Bi/PANI/CeO2 | 12.38 | 4.86 | 12.05 | 1.52 | 1.13 |
Table 1 Photocatalytic CO₂ reduction product formation rates of different samples
| 催化剂 | 生成速率/(μmol·g-1·h-1) | ||||
|---|---|---|---|---|---|
| CO | CH4 | O2 | C2H4 | C2H6 | |
| CeO2 | — | — | 2.18 | — | — |
| PANI | 0.48 | 0.54 | 1.42 | — | — |
| Bi/PANI | 2.75 | 2.23 | 8.86 | 0.22 | 0.13 |
| CeO2/PANI | 7.62 | 3.15 | 10.36 | 0.48 | 0.31 |
| Bi/PANI/CeO2 | 12.38 | 4.86 | 12.05 | 1.52 | 1.13 |
Fig.6 Photocatalytic CO2 reduction product yields of different samples, variation of product formation amount of Bi/PANI/CeO2 with time, and isotope ¹³CO2 labeling experiment
Fig.7 Product yield retention rate of photocatalytic CO2 cyclic reaction for 15 times over sample Bi/PANI/CeO2 and crystal phases and morphologies before and after cycling
| [1] | Zhang L, Li C Q, Liu Y, et al. Unraveling active sites regulation and temperature-dependent thermodynamic mechanism in photothermocatalytic CO2 conversion with H2O[J]. NPJ Computational Materials, 2024, 10: 132. |
| [2] | Wang W, Zhang W Y, Dengc C Y, et al. Accelerated photocatalytic carbon dioxide reduction and water oxidation under spatial synergy[J]. Angewandte Chemie International Edition, 2024, 63(7): e202317969. |
| [3] | Liu L Z, Hu J C, Ma Z Y, et al. One-dimensional single atom arrays on ferroelectric nanosheets for enhanced CO2 photoreduction[J]. Nature Communications, 2024, 15(1): 305. |
| [4] | Li M Y, Wu S Q, Liu D N, et al. Engineering spatially adjacent redox sites with synergistic spin polarization effect to boost photocatalytic CO2 methanation[J]. Journal of the American Chemical Society, 2024, 146(22): 15538-15548. |
| [5] | Chang X L, Yan T, Pan W G. Toward tailoring metal-organic frameworks for photocatalytic reduction of CO2 to fuels[J]. Crystal Growth & Design, 2024, 24(6): 2619-2644. |
| [6] | Ren C J, Li Q, Ling C Y, et al. Mechanism-guided design of photocatalysts for CO2 reduction toward multicarbon products[J]. Journal of the American Chemical Society, 2023, 145(51): 28276-28283. |
| [7] | Wang J Y, Yang C, Mao L, et al. Regulating the metallic Cu—Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4 [J]. Advanced Functional Materials, 2023, 33(28): 2213901. |
| [8] | Huang H N, Shi R, Li Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie International Edition, 2022, 61(17): e202200802. |
| [9] | Liu Y P, Zou R, Chen Z X, et al. Engineering a hydrophobic-hydrophilic diphase in a Bi2WO6-C3N4 heterojunction for solar-powered CO2 reduction[J]. ACS Catalysis, 2024, 14(1): 138-147. |
| [10] | Chen S, Huang D L, Zeng G M, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: synergism of interfacial coupling and hole-transfer[J]. Chemical Engineering Journal, 2020, 382: 122840. |
| [11] | Ahamad T, Naushad M, Alzaharani Y, et al. Photocatalytic degradation of bisphenol-A with g-C3N4/MoS2-PANI nanocomposite: kinetics, main active species, intermediates and pathways[J]. Journal of Molecular Liquids, 2020, 311: 113339. |
| [12] | Chen F W, Li Z Q, Jiang Y M, et al. Photocatalytic CO2 reduction coupled with oxidation of benzyl alcohol over CsPbBr3@PANI nanocomposites[J]. The Journal of Physical Chemistry Letters, 2023, 14(49): 11008-11014. |
| [13] | Zheng Y F, Wang Y, Mansoor S, et al. Tuning electrons migration of dual S defects mediated MoS2- x /ZnIn2S4- x toward highly efficient photocatalytic hydrogen production[J]. Small, 2024, 20(33): 2311725. |
| [14] | Wang D Z, Zhu J C, Zu X L, et al. Selective CO2 photoreduction to CH4 via Pd δ +-assisted hydrodeoxygenation over CeO2 nanosheets[J]. Angewandte Chemie International Edition, 2022, 61(30): e202203249. |
| [15] | Yan Y Q, Wu Y Z, Wu Y H, et al. Recent advances of CeO2-based composite materials for photocatalytic applications[J]. ChemSusChem, 2024, 17(14): e202301778. |
| [16] | Xu Q L, Zhang L Y, Cheng B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
| [17] | Xu B R, Luo S C, Hua W B, et al. Mechanistic insights into photocatalytic CO2 reduction with oxygen evolution[J]. Journal of the American Chemical Society, 2014, 136: 12345-12350. |
| [18] | Dong F, Xiong T, Sun Y J, et al. A semimetal bismuth element as a direct plasmonic photocatalyst[J]. Chemical Communications, 2014, 50(72): 10386-10389. |
| [19] | Dong F, Zhao Z W, Sun Y J, et al. An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification[J]. Environmental Science & Technology, 2015, 49(20): 12432-12440. |
| [20] | Yang J J, Li L, Xiao C, et al. Dual-plasmon resonance coupling promoting directional photosynthesis of nitrate from air[J]. Angewandte Chemie International Edition, 2023, 62(47): e202311911. |
| [21] | Ding J, Li C H, Yin H S, et al. One-pot solvothermal synthesis of Bi/Bi2S3/Bi2WO6 S-scheme heterojunction with enhanced photoactivity towards antibiotic oxytetracycline degradation under visible light[J]. Environmental Pollution, 2023, 327: 121550. |
| [22] | Zeng X Y, Xiao X Y, Chen J Y, et al. Electron-hole interactions in choline-phosphotungstic acid boosting molecular oxygen activation for fuel desulfurization[J]. Applied Catalysis B: Environmental, 2019, 248: 573-586. |
| [23] | Nyholm R, Berndtsson A, Martensson N. Core level binding energies for the elements Hf to Bi (Z=72—83)[J]. Journal of Physics C: Solid State Physics, 1980, 13(36): L1091-L1096. |
| [24] | Shen C H, Chen Y, Xu X J, et al. Efficient photocatalytic H2 evolution and Cr(Ⅵ) reduction under visible light using a novel Z-scheme SnIn4S8/CeO2 heterojunction photocatalysts[J]. Journal of Hazardous Materials, 2021, 416: 126217. |
| [25] | García-Fernández M J, Pastor-Blas M M, Epron F, et al. Proposed mechanisms for the removal of nitrate from water by platinum catalysts supported on polyaniline and polypyrrole[J]. Applied Catalysis B: Environmental, 2018, 225: 162-171. |
| [26] | Chen S G, Wei Z D, Qi X Q, et al. Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255. |
| [27] | Wang L L, Ma W H, Fang Y F, et al. Bi4Ti3O12 synthesized by high temperature solid phase method and it's visible catalytic activity[J]. Procedia Environmental Sciences, 2013, 18: 547-558. |
| [28] | Zondaka Z, Kesküla A, Tamm T, et al. Polypyrrole linear actuation tuned by phosphotungstic acid[J]. Sensors and Actuators B: Chemical, 2017, 247: 742-748. |
| [29] | Wang F, Zeng F S, Yu Z Y, et al. A comparative study about the influence of nitrogen doping and oxygen vacancies on the photocatalytic performance of ceria[J]. Surfaces and Interfaces, 2024, 46: 103889. |
| [30] | Tu W G, Zhou Y, Zou Z G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects[J]. Advanced Materials, 2014, 26(27): 4607-4626. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Fanchen KONG, Shuo ZHANG, Mingsheng TANG, Huiming ZOU, Zhouhang HU, Changqing TIAN. Simulation of gas bearings in carbon dioxide linear compressors [J]. CIESC Journal, 2025, 76(S1): 281-288. |
| [3] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [4] | Jianmin ZHANG, Meigui HE, Wanxin JIA, Jing ZHAO, Wanqin JIN. Poly(ethylene oxide)/crown ether blend membrane and performance for CO2 separation [J]. CIESC Journal, 2025, 76(9): 4862-4871. |
| [5] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [6] | Wei ZHAO, Wenle XING, Zhaoxu HAN, Xingzhong YUAN, Longbo JIANG. Progress of g-C3N4-based metal-free heterojunction photocatalytic degradation of organic pollutants in water [J]. CIESC Journal, 2025, 76(9): 4752-4769. |
| [7] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| [8] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [9] | Hongxin DING, Wenxiang GAN, Yongyang ZHAO, Runze JIA, Ziqi KANG, Yulong ZHAO, Yong XIANG. Corrosion mechanisms of X65 steel welded joints in supercritical CO2 and H2O-rich phases [J]. CIESC Journal, 2025, 76(7): 3426-3435. |
| [10] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [11] | Zeming DONG, Juwei LOU, Nan WANG, Liangqi CHEN, Jiangfeng WANG, Pan ZHAO. Research on thermodynamic properties of supercritical compressed carbon dioxide energy storage system with waste heat recovery [J]. CIESC Journal, 2025, 76(7): 3477-3486. |
| [12] | Zhenning FAN, Haining LIANG, Maoli FANG, Yifan HE, Shuai YU, Xingqing YAN, Jiaran AN, Fanfan QIAO, Jianliang YU. Research and comparison of throttling and venting characteristics of CO2 pipelines in different phase states [J]. CIESC Journal, 2025, 76(7): 3742-3751. |
| [13] | Naisheng GUO, Xiaobo ZHU, Shuang WANG, Ping CHEN, Zhaoyang CHU, Zhichen WANG. Research progress on high and low temperature performance and influencing factors of polyurethane modified asphalt [J]. CIESC Journal, 2025, 76(6): 2505-2523. |
| [14] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [15] | Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen [J]. CIESC Journal, 2025, 76(4): 1731-1741. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||