CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2687-2700.DOI: 10.11949/0438-1157.20241403
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Lili LU1(
), Chen LI1, Liuyun CHEN1, Xinling XIE1, Xuan LUO1, Tongming SU1(
), Zuzeng QIN1, Hongbing JI2
Received:2024-12-04
Revised:2025-01-21
Online:2025-07-09
Published:2025-06-25
Contact:
Tongming SU
卢丽丽1(
), 李晨1, 陈柳云1, 谢新玲1, 罗轩1, 苏通明1(
), 秦祖赠1, 纪红兵2
通讯作者:
苏通明
作者简介:卢丽丽(2000—),女,硕士研究生,lulili20220103@163.com
基金资助:CLC Number:
Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction[J]. CIESC Journal, 2025, 76(6): 2687-2700.
卢丽丽, 李晨, 陈柳云, 谢新玲, 罗轩, 苏通明, 秦祖赠, 纪红兵. BiOBr的形貌调控及其光催化CO2还原性能的研究[J]. 化工学报, 2025, 76(6): 2687-2700.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 比表面积/(m2‧g-1) | 孔容/(cm3‧g-1) | 平均孔径/nm |
|---|---|---|---|
| BiOBr | 6.26 | 0.025 | 14.31 |
| BiOBr-1P | 23.16 | 0.084 | 8.59 |
| BiOBr-2P | 24.56 | 0.072 | 7.84 |
| BiOBr-5P | 21.25 | 0.064 | 7.08 |
| BiOBr-10P | 12.19 | 0.041 | 7.78 |
Table 1 Specific surface area, pore volume, and average pore diameter of BiOBr and BiOBr-xP
| 样品 | 比表面积/(m2‧g-1) | 孔容/(cm3‧g-1) | 平均孔径/nm |
|---|---|---|---|
| BiOBr | 6.26 | 0.025 | 14.31 |
| BiOBr-1P | 23.16 | 0.084 | 8.59 |
| BiOBr-2P | 24.56 | 0.072 | 7.84 |
| BiOBr-5P | 21.25 | 0.064 | 7.08 |
| BiOBr-10P | 12.19 | 0.041 | 7.78 |
Fig.3 TEM and HRTEM images of BiOBr[(a)—(c)] and BiOBr-2P[(d)—(f)], HAADF-STEM image (g) and the corresponding EDS element mappings [(h)—(j)] of BiOBr-2P
Fig.4 XPS survey spectra of BiOBr and BiOBr-2P (a), high resolution XPS spectra of Bi 4f (b), Br 3d (c), O 1s (d), and C 1s (e) in BiOBr and BiOBr-2P, high resolution XPS spectra of N 1s (f) in BiOBr-2P
Fig.6 CO yield (a) and production rate (b) of photocatalytic CO2 reduction over BiOBr and BiOBr-xP, CO yield of photocatalytic CO2 reduction over BiOBr-2P under different reaction conditions (c), stability test of photocatalytic CO2 reduction over BiOBr and BiOBr-2P (d)
Fig.8 In-situ DRIFTS spectra of coadsorption of CO2 and H2O on BiOBr (a) and BiOBr-2P (c) in the dark, in-situ DRIFTS spectra of photocatalytic CO2 reduction reaction over BiOBr (b) and BiOBr-2P (d) under light irradiation
| [1] | Jiang W B, Loh H, Low B Q L, et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2023, 321: 122079. |
| [2] | 王峰, 张顺鑫, 余方博, 等. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
| Wang F, Zhang S X, Yu F B, et al. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction[J]. CIESC Journal, 2023, 74(1): 29-44. | |
| [3] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| [4] | Li H, Song Q J, Wan S J, et al. Atomic interface engineering of single-atom Pt/TiO2-Ti3C2 for boosting photocatalytic CO2 reduction[J]. Small, 2023, 19(34): e2301711. |
| [5] | Ali S, Razzaq A, Kim H, et al. Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction[J]. Chemical Engineering Journal, 2022, 429: 131579. |
| [6] | 李腾, 张利君, 李小红, 等. Cu3P修饰改性CdS光催化析氢性能研究[J]. 聊城大学学报(自然科学版), 2023, 36(2): 25-34, 42. |
| Li T, Zhang L J, Li X H, et al. Study on Cu3P as a cocatalyst to improve the photo-catalytic hydrogen evolution performance of CdS[J]. Journal of Liaocheng University (Natural Science Edition), 2023, 36(2): 25-34, 42. | |
| [7] | Khan B, Raziq F, Bilal Faheem M, et al. Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation[J]. Journal of Hazardous Materials, 2020, 381: 120972. |
| [8] | Zhao L L, Hou H L, Wang L, et al. Atomic-level surface modification of ultrathin Bi2WO6 nanosheets for boosting photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2024, 480: 148033. |
| [9] | 薛义松, 郭恩言, 卢启芳. Bi2MoO6/Ni3V2O8异质结构纳米纤维的合成及光催化性能研究[J]. 聊城大学学报(自然科学版), 2022, 35(6): 58-67. |
| Xue Y S, Guo E Y, Lu Q F. Study on preparation and photocatalytic properties of Bi2MoO6/Ni3V2O8 heterostructured nanofibers[J]. Journal of Liaocheng University (Natural Science Edition), 2022, 35(6): 58-67. | |
| [10] | Sun Y, Younis S A, Kim K H, et al. Potential utility of BiOX photocatalysts and their design/modification strategies for the optimum reduction of CO2 [J]. Science of the Total Environment, 2023, 863: 160923. |
| [11] | Xu Z D, Chen Y, Wang B H, et al. Highly selective photocatalytic CO2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C3N4 [J]. Journal of Colloid and Interface Science, 2023, 651: 645-658. |
| [12] | Gong Y N, Mei J H, Shi W J, et al. Boosting CO2 photoreduction to formate or CO with high selectivity over a covalent organic framework covalently anchored on graphene oxide[J]. Angewandte Chemie International Edition, 2024, 63(10): e202318735. |
| [13] | Chen Z J, Xiong J Y, Cheng G. Recent advances in brookite phase TiO2-based photocatalysts toward CO2 reduction[J]. Fuel, 2024, 357: 129806. |
| [14] | Zhang Z R, Guo R T, Xia C, et al. B-TiO2/CuInS2 photocatalyst based on the synergistic effect of oxygen vacancy and Z-scheme heterojunction for improving photocatalyst CO2 reduction[J]. Separation and Purification Technology, 2023, 323: 124461. |
| [15] | Fan G D, Hu K W, Li X, et al. Highly efficient S-scheme AgBr/BiOBr with visible light photocatalytic performance for carbamazepine degradation: mechanism insight and toxicity assessment[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110918. |
| [16] | Zhao J L, Miao Z R, Zhang Y F, et al. Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity[J]. Journal of Colloid and Interface Science, 2021, 593: 231-243. |
| [17] | Senasu T, Chankhanittha T, Hemavibool K, et al. Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics[J]. Catalysis Today, 2022, 384: 209-227. |
| [18] | Xie F X, Xi Q, Zhang M, et al. Amorphous FeOOH-mediated directional charges transfer in light-switchable oxygen vacancies BiOBr for boosting photocatalytic oxygen evolution[J]. Separation and Purification Technology, 2024, 328: 125082. |
| [19] | Li X B, Hu Y, Dong F, et al. Non-noble-metallic Ni2P nanoparticles modified OV-BiOBr with boosting photoelectrochemical hydrogen evolution without sacrificial agent[J]. Applied Catalysis B: Environmental, 2023, 325: 122341. |
| [20] | Lu L Z, Zhang H Y, Sun Z, et al. Creation of robust oxygen vacancies in 2D ultrathin BiOBr nanosheets by irradiation through photocatalytic memory effect for enhanced CO2 reduction[J]. Chemical Engineering Journal, 2023, 477: 146892. |
| [21] | Gao K Y, Zhu H B, Zhang C M, et al. Boosting photocatalytic nitrogen fixation via in situ constructing Bi metal active sites over BiOBr/BiOI heterojunction[J]. Solar RRL, 2022, 6(12): 2200869. |
| [22] | Talreja N, Ashfaq M, Chauhan D, et al. PVP encapsulated MXene coated on PET surface (PMP)-based photocatalytic materials: a novel photo-responsive assembly for the removal of tetracycline[J]. Environmental Research, 2023, 233: 116439. |
| [23] | Ribeiro C S, Lansarin M A. Enhanced photocatalytic activity of Bi2WO6 with PVP addition for CO2 reduction into ethanol under visible light[J]. Environmental Science and Pollution Research International, 2021, 28(19): 23667-23674. |
| [24] | Wang Q L, Jin Y H, Zhang Y F, et al. Polyvinyl pyrrolidone-coordinated ultrathin bismuth oxybromide nanosheets for boosting photoreduction of carbon dioxide via ligand-to-metal charge transfer[J]. Journal of Colloid and Interface Science, 2022, 606: 1087-1100. |
| [25] | Ni Q Q, Ke X, Qian W J, et al. Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: coupling DFT/QSAR simulations with experiments[J]. Applied Catalysis B: Environmental, 2024, 340: 123226. |
| [26] | Xue X L, Chen R P, Chen H W, et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets[J]. Nano Letters, 2018, 18(11): 7372-7377. |
| [27] | Du C W, Nie S Y, Feng W W, et al. Hydroxyl regulating effect on surface structure of BiOBr photocatalyst toward high-efficiency degradation performance[J]. Chemosphere, 2022, 287: 132246. |
| [28] | Cai M, Shui A Z, Du B. Constructing the ZnO/BiOBr hierarchical heterojunction for efficient pollutant photodegradation driven by visible-light[J]. Surfaces and Interfaces, 2023, 37: 102643. |
| [29] | Gao Z Y, Yao B H, Yang F, et al. Preparation of BiOBr-Bi heterojunction composites with enhanced photocatalytic properties on BiOBr surface by in situ reduction[J]. Materials Science in Semiconductor Processing, 2020, 108: 104882. |
| [30] | Tang Q Y, Yang M J, Yang S Y, et al. Enhanced photocatalytic degradation of glyphosate over 2D CoS/BiOBr heterojunctions under visible light irradiation[J]. Journal of Hazardous Materials, 2021, 407: 124798. |
| [31] | Zhou Y, Zhao H J, Ma F, et al. Synthesis and photocatalytic degradation performance of BiOBr nanoflowers with tunable exposed (001) facet and band gap[J]. Inorganic Chemistry Communications, 2024, 164: 112386. |
| [32] | Xie J, Lu Z J, Feng Y, et al. A small organic molecule strategy for remedying oxygen vacancies by bismuth defects in BiOBr nanosheet with excellent photocatalytic CO2 reduction[J]. Nano Research, 2024, 17(1): 297-306. |
| [33] | Shen M Z, Cai X L, Cao B W, et al. Boron-doped ultrathin BiOBr nanosheet promotion for photocatalytic reduction of CO2 into CO[J]. Journal of Alloys and Compounds, 2024, 981: 173727. |
| [34] | Huang H W, Li X W, Wang J J, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance C O 3 2 - -doped Bi2O2CO3 [J]. ACS Catalysis, 2015, 5(7): 4094-4103. |
| [35] | Wang H, Cai X N, Zhang Y J, et al. Double-template-regulated bionic mineralization for the preparation of flower-like BiOBr/carbon foam/PVP composite with enhanced stability and visible-light-driven catalytic activity[J]. Applied Surface Science, 2021, 555: 149708. |
| [36] | Chen K T, Chong S K, Yuan L L, et al. Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage[J]. Energy Storage Materials, 2021, 39: 239-249. |
| [37] | Wu Y F, Xu M J, Wang Y Q, et al. BiOCl/BiOBr composites for efficient photocatalytic carbon dioxide reduction[J]. Applied Catalysis A: General, 2024, 677: 119708. |
| [38] | Sun J J, Zhang Y X, Fan S Y, et al. An efficient Z-type CeO2/BiOBr heterostructure with enhanced photo-oxidation degradation of o-DCB and CO2 reduction ability[J]. Applied Catalysis B: Environment and Energy, 2024, 356: 124248. |
| [39] | Luo Z S, Ye X Y, Zhang S J, et al. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts[J]. Nature Communications, 2022, 13(1): 2230. |
| [40] | Wang L, Liu G P, Wang B, et al. Oxygen vacancies engineering–mediated BiOBr atomic layers for boosting visible light-driven photocatalytic CO2 reduction[J]. Solar RRL, 2021, 5(6): 2000480. |
| [41] | Wang B, Zhao J Z, Chen H L, et al. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 293: 120182. |
| [42] | Meng J Z, Duan Y Y, Jing S J, et al. Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction[J]. Nano Energy, 2022, 92: 106671. |
| [43] | Xi Y M, Mo W H, Fan Z X, et al. A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction[J]. Journal of Materials Chemistry A, 2022, 10(39): 20934-20945. |
| [44] | Yin S K, Zhao X X, Jiang E H, et al. Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction[J]. Energy & Environmental Science, 2022, 15(4): 1556-1562. |
| [45] | Jin D N, Ma J L, Sun R C. Nitrogen-doped biochar nanosheets facilitate charge separation of a Bi/Bi2O3 nanosphere with a Mott–Schottky heterojunction for efficient photocatalytic reforming of biomass[J]. Journal of Materials Chemistry C, 2022, 10(9): 3500-3509. |
| [46] | Wang S Y, Ding X, Zhang X H, et al. In situ carbon homogeneous doping on ultrathin bismuth molybdate: a dual-purpose strategy for efficient molecular oxygen activation[J]. Advanced Functional Materials, 2017, 27(47): 1703923. |
| [47] | Yue X Y, Cheng L, Fan J J, et al. 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: insights into structure regulation and Fermi level modulation[J]. Applied Catalysis B: Environmental, 2022, 304: 120979. |
| [48] | Wu J M, Li K Y, Yang S Y, et al. In-situ construction of BiOBr/Bi2WO6 S-scheme heterojunction nanoflowers for highly efficient CO2 photoreduction: regulation of morphology and surface oxygen vacancy[J]. Chemical Engineering Journal, 2023, 452: 139493. |
| [49] | Zhao M Y, Qin J Y, Wang N, et al. Reconstruction of surface oxygen vacancy for boosting CO2 photoreduction mediated by BiOBr/CdS heterojunction[J]. Separation and Purification Technology, 2024, 329: 125179. |
| [1] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [2] | Fanchen KONG, Shuo ZHANG, Mingsheng TANG, Huiming ZOU, Zhouhang HU, Changqing TIAN. Simulation of gas bearings in carbon dioxide linear compressors [J]. CIESC Journal, 2025, 76(S1): 281-288. |
| [3] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [4] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [5] | Lei TANG, Zhenfei WANG, Congli LI, Jiahui YANG, Hao ZHENG, Qi SHI, Jinxiang DONG. CO working capacity and operating conditions of Co-MOF-74 and Mg-MOF-74 [J]. CIESC Journal, 2025, 76(5): 2279-2293. |
| [6] | Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen [J]. CIESC Journal, 2025, 76(4): 1731-1741. |
| [7] | Yichen ZHANG, Wenbiao ZHANG, Haoyang LI, Xiaoyang NING. Flow measurement of gas-liquid two-phase CO2 using Venturi tube based on dual differential pressure model [J]. CIESC Journal, 2025, 76(4): 1493-1503. |
| [8] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
| [9] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
| [10] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
| [11] | Yao FU, Yingjuan SHAO, Wenqi ZHONG. Experimental study on cyclic heat storage performance of TiO2-doped calcium based materials under pressurized carbonation [J]. CIESC Journal, 2025, 76(3): 1180-1190. |
| [12] | Zheng GONG, Xiulu GAO, Ling ZHAO, Dongdong HU. Preparation and shape memory properties of PBAT/PLA foams by supercritical CO2 [J]. CIESC Journal, 2025, 76(2): 888-896. |
| [13] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
| [14] | Yanlin CHEN, Aiguo ZHOU, Jiale ZHENG, Chuanruo YANG, Tianshu GE. Effects of support materials on amine-impregnated DAC adsorbents [J]. CIESC Journal, 2024, 75(S1): 217-222. |
| [15] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||