CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3426-3435.DOI: 10.11949/0438-1157.20241422
• Surface and interface engineering • Previous Articles Next Articles
Hongxin DING1(
), Wenxiang GAN2, Yongyang ZHAO1, Runze JIA1, Ziqi KANG1, Yulong ZHAO1, Yong XIANG1(
)
Received:2024-12-06
Revised:2025-02-06
Online:2025-08-13
Published:2025-07-25
Contact:
Yong XIANG
丁宏鑫1(
), 干文翔2, 赵雍洋1, 贾润泽1, 康子祺1, 赵玉隆1, 向勇1(
)
通讯作者:
向勇
作者简介:丁宏鑫(1999—),男,博士研究生,1206492721@qq.com
基金资助:CLC Number:
Hongxin DING, Wenxiang GAN, Yongyang ZHAO, Runze JIA, Ziqi KANG, Yulong ZHAO, Yong XIANG. Corrosion mechanisms of X65 steel welded joints in supercritical CO2 and H2O-rich phases[J]. CIESC Journal, 2025, 76(7): 3426-3435.
丁宏鑫, 干文翔, 赵雍洋, 贾润泽, 康子祺, 赵玉隆, 向勇. X65钢焊接接头在超临界CO2相及富H2O相中的腐蚀机理研究[J]. 化工学报, 2025, 76(7): 3426-3435.
Add to citation manager EndNote|Ris|BibTeX
| 元素 | 含量/%(质量分数) |
|---|---|
| C | 0.12 |
| Ni | 0.07 |
| Mo | 0.17 |
| Mn | 1.27 |
| Cr | 0.11 |
| V | 0.057 |
| Nb | 0.05 |
| Si | 0.18 |
| Cu | 0.12 |
| Sn | 0.008 |
| Al | 0.022 |
| B | 0.0005 |
| Ti | 0.001 |
| S | 0.002 |
| Fe | 余量 |
Table 1 Elemental composition of X65 pipeline steel
| 元素 | 含量/%(质量分数) |
|---|---|
| C | 0.12 |
| Ni | 0.07 |
| Mo | 0.17 |
| Mn | 1.27 |
| Cr | 0.11 |
| V | 0.057 |
| Nb | 0.05 |
| Si | 0.18 |
| Cu | 0.12 |
| Sn | 0.008 |
| Al | 0.022 |
| B | 0.0005 |
| Ti | 0.001 |
| S | 0.002 |
| Fe | 余量 |
| 选取条件 | 质量分数/% | ||
|---|---|---|---|
| C | O | Fe | |
| A | 4.50 | 2.69 | 92.81 |
| B | 7.19 | 3.91 | 88.90 |
| C | 8.27 | 4.70 | 87.03 |
| D | 9.86 | 40.09 | 50.05 |
| E | 11.37 | 39.86 | 48.77 |
| F | 10.33 | 41.00 | 48.67 |
Table 2 EDS element analysis of pipeline steel welded joints
| 选取条件 | 质量分数/% | ||
|---|---|---|---|
| C | O | Fe | |
| A | 4.50 | 2.69 | 92.81 |
| B | 7.19 | 3.91 | 88.90 |
| C | 8.27 | 4.70 | 87.03 |
| D | 9.86 | 40.09 | 50.05 |
| E | 11.37 | 39.86 | 48.77 |
| F | 10.33 | 41.00 | 48.67 |
| 工况 | 表面粗糙度/μm |
|---|---|
| a | 1.276 |
| b | 9.462 |
| c | 1.986 |
| d | 1.178 |
| e | 2.289 |
| f | 2.072 |
Table 3 Surface roughness under different working conditions
| 工况 | 表面粗糙度/μm |
|---|---|
| a | 1.276 |
| b | 9.462 |
| c | 1.986 |
| d | 1.178 |
| e | 2.289 |
| f | 2.072 |
| [1] | Sim S, Cole I S, Choi Y S, et al. A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes[J]. International Journal of Greenhouse Gas Control, 2014, 29: 185-199. |
| [2] | Wang Z M, Song G L, Zhang J. Corrosion control in CO2 enhanced oil recovery from a perspective of multiphase fluids[J]. Frontiers in Materials, 2019, 6: 272. |
| [3] | 向勇, 原玉, 周佩, 等. 碳捕集利用与封存中的金属腐蚀问题研究:进展与挑战[J]. 中国工程科学, 2023, 25(3): 197-208. |
| Xiang Y, Yuan Y, Zhou P, et al. Metal corrosion in carbon capture, utilization, and storage: progress and challenges[J]. Strategic Study of CAE, 2023, 25(3): 197-208. | |
| [4] | Xiang Y, Li C, Hesitao W, et al. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment[J]. The Journal of Supercritical Fluids, 2018, 138: 132-142. |
| [5] | Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. The Journal of Supercritical Fluids, 2011, 58(2): 286-294. |
| [6] | Li C, Xiang Y, Li W G. Initial corrosion mechanism for API 5L X80 steel in CO2/SO2-saturated aqueous solution within a CCUS system: inhibition effect of SO2 impurity[J]. Electrochimica Acta, 2019, 321: 134663. |
| [7] | Li C, Xiang Y, Wang R T, et al. Exploring the influence of flue gas impurities on the electrochemical corrosion mechanism of X80 steel in a supercritical CO2-saturated aqueous environment[J]. Corrosion Science, 2023, 211: 110899. |
| [8] | Li K Y, Zeng Y M. Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities[J]. Construction and Building Materials, 2023, 362: 129746. |
| [9] | Zeng Y M, Li K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines[J]. Corrosion Science, 2020, 165: 108404. |
| [10] | Wei L, Pang X L, Gao K W. Corrosion of low alloy steel and stainless steel in supercritical CO2/H2O/H2S systems[J]. Corrosion Science, 2016, 111: 637-648. |
| [11] | 刘广瑜, 支树洁, 柳歆, 等. CCUS超临界/密相CO2管道内腐蚀研究进展[J]. 油气储运, 2024, 43(5): 510-523. |
| Liu G Y, Zhi S J, Liu X, et al. Research progress on internal corrosion of supercritical/dense-phase CO2 pipelines for CCUS[J]. Oil & Gas Storage and Transportation, 2024, 43(5): 510-523. | |
| [12] | Hua Y, Barker R, Neville A. Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2 [J]. International Journal of Greenhouse Gas Control, 2014, 31: 48-60. |
| [13] | 胡丽华, 衣华磊, 杨维健, 等. 水含量对超临界CO2输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584. |
| Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline steel in supercritical CO2 fluids[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(3): 576-584. | |
| [14] | Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport[J]. The Journal of Supercritical Fluids, 2012, 67: 14-21. |
| [15] | Li C, Xiang Y, Song C C, et al. Assessing the corrosion product scale formation characteristics of X80 steel in supercritical CO2-H2O binary systems with flue gas and NaCl impurities relevant to CCUS technology[J]. The Journal of Supercritical Fluids, 2019, 146: 107-119. |
| [16] | Hong H, Ye T C, Zhang J, et al. Corrosion mitigation behavior of mild steel in supercritical CO2 environments with varying the solution volume[J]. Corrosion Science, 2024, 229: 111853. |
| [17] | Górka J, Jamrozik W, Kiel-Jamrozik M. The effect of TIG welding on the structure and hardness of butt joints made of Inconel 718[J]. Heliyon, 2023, 9(2): e13175. |
| [18] | Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63(12): 1201-1204. |
| [19] | Khalaj G, Khalaj M J. Investigating the corrosion of the heat-affected zones (HAZs) of API-X70 pipeline steels in aerated carbonate solution by electrochemical methods[J]. International Journal of Pressure Vessels and Piping, 2016, 145: 1-12. |
| [20] | Alizadeh M, Bordbar S. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution[J]. Corrosion Science, 2013, 70: 170-179. |
| [21] | Wang Q, Cao X M, Wu T Q, et al. Corrosion of X80 steel welded joint under disbonded coating in an acidic soil solution[J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104508. |
| [22] | Chaves I A, Melchers R E. Pitting corrosion in pipeline steel weld zones[J]. Corrosion Science, 2011, 53(12): 4026-4032. |
| [23] | Deng H D, Cao X L, Yan Y B, et al. Effect of microstructure on corrosion of welded joints of X80 steel in water saturated supercritical CO2 [J]. Anti-Corrosion Methods and Materials, 2019, 66(4): 425-431. |
| [24] | Zhao Z P, Xu K, Xu P F, et al. CO2 corrosion behavior of simulated heat-affected zones for X80 pipeline steel[J]. Materials Characterization, 2021, 171: 110772. |
| [25] | Nordsveen M, Nešić S, Nyborg R, et al. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films (part 1): Theory and verification[J]. Corrosion, 2003, 59(5): 443-456. |
| [26] | Wang J Z, Wang J Q, Han E H. Influence of conductivity on corrosion behavior of 304 stainless steel in high temperature aqueous environment[J]. Journal of Materials Science & Technology, 2016, 32(4): 333-340. |
| [27] | Chin R J, Nobe K. Electrodissolution kinetics of iron in chloride solutions[J]. Journal of The Electrochemical Society, 1972, 119(11): 1457. |
| [28] | Foroulis Z A, Thubrikar M J. On the kinetics of the breakdown of passivity of preanodized aluminum by chloride ions[J]. Journal of the Electrochemical Society, 122(10): 1296-1301. |
| [29] | 韩晓龙, 王毅, 吴鑫, 等. CO2体系下X70天然气管线钢的电化学腐蚀行为研究[J]. 材料保护, 2024, 57(5): 83-89, 151. |
| Han X L, Wang Y, Wu X, et al. Study of electrochemical corrosion behavior on X70 natural gas pipeline steel under CO2 system[J]. Materials Protection, 2024, 57(5): 83-89, 151. | |
| [30] | Xiang Y, Song C C, Li C, et al. Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities[J]. Process Safety and Environmental Protection, 2020, 140: 124-136. |
| [31] | 宋光铃, 曹楚南, 高卫红, 等. Cl-对铁在硫酸介质中致钝过程的影响[J]. 中国腐蚀与防护学报, 1994, 14(3): 175-183. |
| Song G L, Cao C N, Gao W H, et al. Effects of Cl- on passivation process of Fe in acidic media[J]. Journal of Chinese Society for Corrosion and Protection, 1994, 14(3): 175-183. | |
| [32] | Dugstad A, Hemmer H, Seiersten M. Effect of steel microstructure on corrosion rate and protective iron carbonate film formation[J]. Corrosion, 2001, 57(4): 369-378. |
| [33] | Lu Y X, Jing H Y, Han Y D, et al. Effect of welding heat input on the corrosion resistance of carbon steel weld metal[J]. Journal of Materials Engineering and Performance, 2016, 25(2): 565-576. |
| [34] | Ding H X, Xiang Y, Lu W P, et al. Selective adsorption and corrosion mechanism of SO2 and its hydrates on X65 welded joints steel in CO2-saturated aqueous solution[J]. Corrosion Science, 2024, 238: 112373. |
| [1] | Fengfeng GAO, Huifeng CHENG, Bo YANG, Xiaogang HAO. Electrically driven NiFeMn LDH/CNTs/PVDF film electrode for selective extraction of tungstate ions [J]. CIESC Journal, 2025, 76(7): 3350-3360. |
| [2] | Jia KANG, Huan LIU, Haiyan LI, Maoliang LUO, Hong YAO. Corrosion behavior and coating performance of carbon steel in HCl/NaOH thermal medium in wide temperature zone [J]. CIESC Journal, 2025, 76(6): 2872-2885. |
| [3] | Changqiu HE, Jiameng TIAN, Yiqi CHEN, Yuchen ZHU, Xin LIU, Hai WANG, Zhentao WANG, Junfeng WANG, Zhifu ZHOU, Bin CHEN. Synergistic heat transfer enhancement characteristics due to electric field and macro-structured surface during thin film boiling [J]. CIESC Journal, 2025, 76(6): 2589-2602. |
| [4] | Jiangyue GUO, Shoujin CHANG, Haitao HU. Numerical simulation for flow condensation of methanol in horizontal tube [J]. CIESC Journal, 2025, 76(6): 2580-2588. |
| [5] | Wen CHAN, Wan YU, Gang WANG, Huashan SU, Fenxia HUANG, Tao HU. Thermodynamic and economic analyses and dual-objective optimization of Allam cycle with improved regenerator layout [J]. CIESC Journal, 2025, 76(4): 1680-1692. |
| [6] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
| [7] | Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser [J]. CIESC Journal, 2025, 76(3): 995-1005. |
| [8] | Zheng GONG, Xiulu GAO, Ling ZHAO, Dongdong HU. Preparation and shape memory properties of PBAT/PLA foams by supercritical CO2 [J]. CIESC Journal, 2025, 76(2): 888-896. |
| [9] | Yan LI, Hongli GUO, Guoqing SU, Jianwen ZHANG. Gas-liquid two-phase flow and erosion-corrosion in air cooler of hydrogenation unit [J]. CIESC Journal, 2025, 76(1): 141-150. |
| [10] | Junjie ZHANG, Yuan CHEN, Yuntang LI, Xiaolu LI, Bingqing WANG, Xudong PENG. Analysis and optimization of dynamic performance of super-elliptical hole floating seal dam compliant foil face gas seal [J]. CIESC Journal, 2025, 76(1): 296-310. |
| [11] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
| [12] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
| [13] | Liping ZHANG, Xiaorong MENG, Jinfeng SONG, Jinjing DU. Preparation of VO2@KH550/570@PS composite film and its thermally induced phase change properties [J]. CIESC Journal, 2024, 75(9): 3348-3359. |
| [14] | Yin CHEN, Xiao ZHAO, Wangfang DU, Zhuqiang YANG, Kai LI, Jianfu ZHAO. Optimization of diagnostic method for liquid film dynamics in spray cooling and heat transfer characteristics analysis [J]. CIESC Journal, 2024, 75(8): 2734-2743. |
| [15] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||