CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4369-4382.DOI: 10.11949/0438-1157.20250063
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Lanhao LOU1,2(
), Lipeng YANG1,2, Xiaoguang YANG1,2(
)
Received:2025-01-15
Revised:2025-02-12
Online:2025-10-23
Published:2025-09-25
Contact:
Xiaoguang YANG
通讯作者:
杨晓光
作者简介:娄岚浩(2000—),男,硕士研究生,3220220311@bit.edu.cn
基金资助:CLC Number:
Lanhao LOU, Lipeng YANG, Xiaoguang YANG. Review of parameter identification for physics-based lithium-ion battery models[J]. CIESC Journal, 2025, 76(9): 4369-4382.
娄岚浩, 杨立鹏, 杨晓光. 锂离子电池电化学机理模型参数辨识研究综述[J]. 化工学报, 2025, 76(9): 4369-4382.
Add to citation manager EndNote|Ris|BibTeX
| 机理 | 控制方程 | 边界条件 |
|---|---|---|
| 输出电压 | ||
| 固相传质 | ||
| 液相传质 | ||
| 固相电荷守恒 | ||
| 液相电荷守恒 | ||
| 反应动力学 | ||
Table 1 Equations of DFN model
| 机理 | 控制方程 | 边界条件 |
|---|---|---|
| 输出电压 | ||
| 固相传质 | ||
| 液相传质 | ||
| 固相电荷守恒 | ||
| 液相电荷守恒 | ||
| 反应动力学 | ||
| 分类 | 符号 | 意义 | 相关性 | 单位 | 测试方法 |
|---|---|---|---|---|---|
| 几何参数 | 正极厚度 | SoH | |||
| 隔膜厚度 | SoH | ||||
| 负极厚度 | SoH | ||||
| 活性电极面积 | BET[ | ||||
| 正极活性材料体积分数 | X,SoH | ||||
| 负极活性材料体积分数 | X,SoH | ||||
| 正极孔隙率 | X,SoH | 压汞法[ | |||
| 隔膜孔隙率 | 真密度,SEM | ||||
| 负极孔隙率 | X,SoH | 压汞法 | |||
| 正极材料颗粒半径 | 激光粒度(DLS)[ 激光粒度(DLS)[ | ||||
| 负极材料颗粒半径 | |||||
| 传质参数 | 正极材料固相扩散系数 | SoC,T | GITT[ 滴定(PITT)[ | ||
| 负极材料固相扩散系数 | SoC,T | ||||
| 电解液液相扩散系数 | Ce,T | 脉冲弛豫[ | |||
| 电解液阳离子迁移数 | Ce,T | 浓差电池[ | |||
| 正极电导率 | 四探针法 四探针法 | ||||
| 负极电导率 | |||||
| 电解液离子电导率 | Ce,T | 电导率测试仪 | |||
| 反应动力学参数 | 正极反应速率常数 | SoC,T | EIS[ EIS[ | ||
| 负极反应速率常数 | SoC,T | ||||
| SEI膜电阻率 | SoH,T | ||||
| 正极开路电势 | SoC,T | GITT、PITT GITT、PITT | |||
| 负极开路电势 | SoC,T | ||||
| 参考浓度参数 | 正极最大嵌锂浓度 | ||||
| 负极最大嵌锂浓度 | |||||
| 电解液初始浓度 | |||||
| 外电路参数 | 输出/输入电流 | ||||
| 集流体电阻率 |
Table 2 Parameters of DFN model
| 分类 | 符号 | 意义 | 相关性 | 单位 | 测试方法 |
|---|---|---|---|---|---|
| 几何参数 | 正极厚度 | SoH | |||
| 隔膜厚度 | SoH | ||||
| 负极厚度 | SoH | ||||
| 活性电极面积 | BET[ | ||||
| 正极活性材料体积分数 | X,SoH | ||||
| 负极活性材料体积分数 | X,SoH | ||||
| 正极孔隙率 | X,SoH | 压汞法[ | |||
| 隔膜孔隙率 | 真密度,SEM | ||||
| 负极孔隙率 | X,SoH | 压汞法 | |||
| 正极材料颗粒半径 | 激光粒度(DLS)[ 激光粒度(DLS)[ | ||||
| 负极材料颗粒半径 | |||||
| 传质参数 | 正极材料固相扩散系数 | SoC,T | GITT[ 滴定(PITT)[ | ||
| 负极材料固相扩散系数 | SoC,T | ||||
| 电解液液相扩散系数 | Ce,T | 脉冲弛豫[ | |||
| 电解液阳离子迁移数 | Ce,T | 浓差电池[ | |||
| 正极电导率 | 四探针法 四探针法 | ||||
| 负极电导率 | |||||
| 电解液离子电导率 | Ce,T | 电导率测试仪 | |||
| 反应动力学参数 | 正极反应速率常数 | SoC,T | EIS[ EIS[ | ||
| 负极反应速率常数 | SoC,T | ||||
| SEI膜电阻率 | SoH,T | ||||
| 正极开路电势 | SoC,T | GITT、PITT GITT、PITT | |||
| 负极开路电势 | SoC,T | ||||
| 参考浓度参数 | 正极最大嵌锂浓度 | ||||
| 负极最大嵌锂浓度 | |||||
| 电解液初始浓度 | |||||
| 外电路参数 | 输出/输入电流 | ||||
| 集流体电阻率 |
| 类型 | 方法 | 模型 | 工况 | 分析目标 | 优缺点 | 文献 |
|---|---|---|---|---|---|---|
| 局部 | 方差 | DFN | 恒流恒压充电、WLTP | 电压、 | 考虑多种工况以及对负极点位的敏感性,但计算量大且OAT存在局限性 | [ |
| 局部 | 方差 | DFN+热阻网络 | 恒流放电 | 电压、温度 | 模型能够预测电压及温度,但实验复杂 | [ |
| 局部 | 方差 | SPMe | 恒流放电 | 电压 | 有效简化模型,减少计算量,但适用工况少,存在局限性 | [ |
| 全局 | Morris | SPM | 恒流恒压充电、恒流放电、FUDS | 电压 | 采样方法高效,但简化模型存在局限性 | [ |
| 全局 | 偏相 关性 | DFN | 恒流充电、FUDS | 电压误差 | 全面分析老化参数,并进行收敛性分析,确保可靠性,但模型复杂,计算量大 | [ |
Table 3 Related literature on sensitivity analysis for physics-based lithium-ion battery models
| 类型 | 方法 | 模型 | 工况 | 分析目标 | 优缺点 | 文献 |
|---|---|---|---|---|---|---|
| 局部 | 方差 | DFN | 恒流恒压充电、WLTP | 电压、 | 考虑多种工况以及对负极点位的敏感性,但计算量大且OAT存在局限性 | [ |
| 局部 | 方差 | DFN+热阻网络 | 恒流放电 | 电压、温度 | 模型能够预测电压及温度,但实验复杂 | [ |
| 局部 | 方差 | SPMe | 恒流放电 | 电压 | 有效简化模型,减少计算量,但适用工况少,存在局限性 | [ |
| 全局 | Morris | SPM | 恒流恒压充电、恒流放电、FUDS | 电压 | 采样方法高效,但简化模型存在局限性 | [ |
| 全局 | 偏相 关性 | DFN | 恒流充电、FUDS | 电压误差 | 全面分析老化参数,并进行收敛性分析,确保可靠性,但模型复杂,计算量大 | [ |
| 模型 | 算法 | 优化参数 | 辨识结果 | 优缺点 | 文献 |
|---|---|---|---|---|---|
| DFN | GA | 17个标量参数、71函数参数 | 误差<5% | 研究框架全面,实验数据丰富,但参数设置较多,计算成本高 | [ |
| DFN | GA | 恒流工况MAE< 25 mV 动态工况MAE<80 mV | 平均电极模型简化合理,实验验证全面,但简化模型适用有限 | [ | |
| DFN | PSO | 仅图示 | 优化算法简单高效,但辨识参数范围有限 | [ | |
| SPMe | 自适应PSO | 恒流工况RMSE<30 mV; 脉冲工况RMSE<30 mV | 模型简化合理,算法高效,但验证工况较少 | [ | |
| DFN | CSA | 恒流工况RMSE 9 mV; WLTP工况RMSE 12.7 mV | 多目标优化框架提升精度,但数据需求量大 | [ |
Table 4 Related literature on metaheuristic optimization algorithms
| 模型 | 算法 | 优化参数 | 辨识结果 | 优缺点 | 文献 |
|---|---|---|---|---|---|
| DFN | GA | 17个标量参数、71函数参数 | 误差<5% | 研究框架全面,实验数据丰富,但参数设置较多,计算成本高 | [ |
| DFN | GA | 恒流工况MAE< 25 mV 动态工况MAE<80 mV | 平均电极模型简化合理,实验验证全面,但简化模型适用有限 | [ | |
| DFN | PSO | 仅图示 | 优化算法简单高效,但辨识参数范围有限 | [ | |
| SPMe | 自适应PSO | 恒流工况RMSE<30 mV; 脉冲工况RMSE<30 mV | 模型简化合理,算法高效,但验证工况较少 | [ | |
| DFN | CSA | 恒流工况RMSE 9 mV; WLTP工况RMSE 12.7 mV | 多目标优化框架提升精度,但数据需求量大 | [ |
| 特性 | GA | PSO | CSA |
|---|---|---|---|
| 全局搜索能力 | 强 | 中等 | 强 |
| 收敛速度 | 慢 | 快 | 中等 |
| 计算开销 | 高 | 低 | 中等 |
| 参数依赖性 | 高 | 中等 | 低 |
| 实现难度 | 高 | 低 | 低 |
| 理论基础 | 强 | 强 | 弱 |
| 适用问题 | 连续、离散、组合优化 | 连续优化 | 连续、离散、组合优化 |
Table 5 Comparison of different metaheuristic optimization algorithms
| 特性 | GA | PSO | CSA |
|---|---|---|---|
| 全局搜索能力 | 强 | 中等 | 强 |
| 收敛速度 | 慢 | 快 | 中等 |
| 计算开销 | 高 | 低 | 中等 |
| 参数依赖性 | 高 | 中等 | 低 |
| 实现难度 | 高 | 低 | 低 |
| 理论基础 | 强 | 强 | 弱 |
| 适用问题 | 连续、离散、组合优化 | 连续优化 | 连续、离散、组合优化 |
| [1] | Rani S, Jayapragash R. Review on electric mobility: trends, challenges and opportunities[J]. Results in Engineering, 2024, 23: 102631. |
| [2] | 李凌云. 中国新能源汽车用锂电池产业现状及发展趋势[J]. 电源技术, 2020, 44(4): 628-630. |
| Li L Y. Current status and development trend of Li-ion batteries for new energy vehicles in China[J]. Chinese Journal of Power Sources, 2020, 44(4): 628-630. | |
| [3] | Wang Y J, Tian J Q, Sun Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015. |
| [4] | Nozarijouybari Z, Fathy H K. Machine learning for battery systems applications: progress, challenges, and opportunities[J]. Journal of Power Sources, 2024, 601: 234272. |
| [5] | Demirci O, Taskin S, Schaltz E, et al. Review of battery state estimation methods for electric vehicles-Part Ⅱ: SOH estimation[J]. Journal of Energy Storage, 2024, 96: 112703. |
| [6] | Plett G L. Battery Management Systems. volume I: Battery Modeling[M]. Boston·Longdon: Artech House, 2015. |
| [7] | Lin X Y, Tang Y L, Ren J, et al. State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102840. |
| [8] | Wu M Y, Qin L L, Wu G. State of power estimation of power lithium-ion battery based on an equivalent circuit model[J]. Journal of Energy Storage, 2022, 51: 104538. |
| [9] | Chen L P, Bao X Y, Lopes A M, et al. State of health estimation of lithium-ion batteries based on equivalent circuit model and data-driven method[J]. Journal of Energy Storage, 2023, 73: 109195. |
| [10] | Lai X, Sun L, Chen Q W, et al. A novel modeling methodology for hysteresis characteristic and state-of-charge estimation of LiFePO4 batteries[J]. Journal of Energy Storage, 2024, 101: 113807. |
| [11] | Wycisk D, Oldenburger M, Stoye M G, et al. Modified Plett-model for modeling voltage hysteresis in lithium-ion cells[J]. Journal of Energy Storage, 2022, 52: 105016. |
| [12] | Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs[J]. Journal of Power Sources, 2004, 134(2): 262-276. |
| [13] | Koseoglou M, Tsioumas E, Panagiotidis I, et al. A lithium-ion battery equivalent circuit model based on a hybrid parametrization approach[J]. Journal of Energy Storage, 2023, 73: 109051. |
| [14] | Vyroubal P, Kazda T. Equivalent circuit model parameters extraction for lithium ion batteries using electrochemical impedance spectroscopy[J]. Journal of Energy Storage, 2018, 15: 23-31. |
| [15] | Wang J F, Jia Y K, Yang N, et al. Precise equivalent circuit model for Li-ion battery by experimental improvement and parameter optimization[J]. Journal of Energy Storage, 2022, 52: 104980. |
| [16] | Liu K L, Niri M F, Apachitei G, et al. Interpretable machine learning for battery capacities prediction and coating parameters analysis[J]. Control Engineering Practice, 2022, 124: 105202. |
| [17] | Guo F, Wu X W, Liu L L, et al. Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network[J]. Energy, 2023, 270: 126880. |
| [18] | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. |
| [19] | Fuller T F, Doyle M, Newman J. Simulation and optimization of the dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1994, 141(1): 1-10. |
| [20] | Ning G, Popov B N. Cycle life modeling of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2004, 151(10): A1584. |
| [21] | Wang A A, O'Kane S E J, Planella F B, et al. Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models[J]. Progress in Energy, 2022, 4(3): 032004. |
| [22] | Birkl C R, Roberts M R, McTurk E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
| [23] | Marquis S G, Sulzer V, Timms R, et al. An asymptotic derivation of a single particle model with electrolyte[J]. Journal of the Electrochemical Society, 2019, 166(15): A3693-A3706. |
| [24] | Alkhedher M, Al Tahhan A B, Yousaf J, et al. Electrochemical and thermal modeling of lithium-ion batteries: a review of coupled approaches for improved thermal performance and safety lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111172. |
| [25] | Ai W L, Kraft L, Sturm J, et al. Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells[J]. Journal of the Electrochemical Society, 2020, 167(1): 013512. |
| [26] | Guo M, Sikha G, White R E. Single-particle model for a lithium-ion cell: thermal behavior[J]. Journal of the Electrochemical Society, 2010, 158(2): A122. |
| [27] | Wang D F, Huang H Q, Tang Z H, et al. A lithium-ion battery electrochemical-thermal model for a wide temperature range applications[J]. Electrochimica Acta, 2020, 362: 137118. |
| [28] | Wang C Y, Zhang G S, Ge S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
| [29] | Li R H, Li W, Singh A, et al. Effect of external pressure and internal stress on battery performance and lifespan[J]. Energy Storage Materials, 2022, 52: 395-429. |
| [30] | Oh K Y, Epureanu B I, Siegel J B, et al. Phenomenological force and swelling models for rechargeable lithium-ion battery cells[J]. Journal of Power Sources, 2016, 310: 118-129. |
| [31] | Yang K, Zhang W K, Yin Y, et al. A hierarchical electrochemical-thermal-mechanical coupled model capable of predicting non-uniform behaviors in large-format Li-ion cells[J]. Journal of Power Sources, 2025, 629: 236049. |
| [32] | O'Regan K, Brosa Planella F, Widanage W D, et al. Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery[J]. Electrochimica Acta, 2022, 425: 140700. |
| [33] | Capron O, Gopalakrishnan R, Jaguemont J, et al. On the ageing of high energy lithium-ion batteries-comprehensive electrochemical diffusivity studies of harvested nickel manganese cobalt electrodes[J]. Materials, 2018, 11(2): 176. |
| [34] | Suthar B, Northrop P W C, Rife D, et al. Effect of porosity, thickness and tortuosity on capacity fade of anode[J]. Journal of the Electrochemical Society, 2015, 162(9): A1708-A1717. |
| [35] | Huang G Y, Xu S M, Lu S S, et al. Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7236-7243. |
| [36] | Ecker M, Tran T K D, Dechent P, et al. Parameterization of a physico-chemical model of a lithium-ion battery[J]. Journal of the Electrochemical Society, 2015, 162(9): A1836-A1848. |
| [37] | Eshel G, Levy G J, Mingelgrin U, et al. Critical evaluation of the use of laser diffraction for particle-size distribution analysis[J]. Soil Science Society of America Journal, 2004, 68(3): 736. |
| [38] | Schmalstieg J, Rahe C, Ecker M, et al. Full cell parameterization of a high-power lithium-ion battery for a physico-chemical model: part Ⅰ. Physical and electrochemical parameters[J]. Journal of the Electrochemical Society, 2018, 165(16): A3799-A3810. |
| [39] | Weppner W, Huggins R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb[J]. Journal of the Electrochemical Society, 1977, 124(10): 1569. |
| [40] | Pollard R, Comte T. Determination of transport properties for solid electrolytes from the impedance of thin layer cells[J]. Journal of the Electrochemical Society, 136(12): 3734-3748. |
| [41] | Levi M D, Salitra G, Markovsky B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1- x CoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS[J]. Journal of the Electrochemical Society, 1999, 146(4): 1279-1289. |
| [42] | Landesfeind J, Gasteiger H A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2019, 166(14): A3079-A3097. |
| [43] | Chaouachi O, Réty J M, Génies S, et al. Experimental and theoretical investigation of Li-ion battery active materials properties: application to a graphite/Ni0.6Mn0.2Co0.2O2 system[J]. Electrochimica Acta, 2021, 366: 137428. |
| [44] | Schmid A U, Kurka M, Birke K P. Reproducibility of Li-ion cell reassembling processes and their influence on coin cell aging[J]. Journal of Energy Storage, 2019, 24: 100732. |
| [45] | Kong Y L, Yuan L X, Liao Y Q, et al. Efficient separation and selective Li recycling of spent LiFePO4 cathode[J]. Energy Materials, 2023, 3, 300053. |
| [46] | Chen C H, Brosa Planella F, O'Regan K, et al. Development of experimental techniques for parameterization of multi-scale lithium-ion battery models[J]. Journal of the Electrochemical Society, 2020, 167(8): 080534. |
| [47] | Yang X G, Leng Y J, Zhang G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40. |
| [48] | Kim J, Chun H Y, Kim M, et al. Effective and practical parameters of electrochemical Li-ion battery models for degradation diagnosis[J]. Journal of Energy Storage, 2021, 42: 103077. |
| [49] | Uddin K, Perera S, Widanage W, et al. Characterising lithium-ion battery degradation through the identification and tracking of electrochemical battery model parameters[J]. Batteries, 2016, 2(2): 13. |
| [50] | Li W H, Demir I, Cao D C, et al. Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence[J]. Energy Storage Materials, 2022, 44: 557-570. |
| [51] | Li W H, Cao D C, Jöst D, et al. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[J]. Applied Energy, 2020, 269: 115104. |
| [52] | Zhang L Q, Lyu C, Hinds G, et al. Parameter sensitivity analysis of cylindrical LiFePO4 battery performance using multi-physics modeling[J]. Journal of the Electrochemical Society, 2014, 161(5): A762-A776. |
| [53] | 康鑫, 时玮, 陈洪涛. 基于锂离子电池简化电化学模型的参数辨识[J]. 储能科学与技术, 2020, 9(3): 969-978. |
| Kang X, Shi W, Chen H T. Parameter identification based on simplified electrochemical model of lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 969-978. | |
| [54] | Zeng X, Xu L, Deng Z W, et al. Global sensitivity analysis of battery single particle model parameters[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2019: 1-6. |
| [55] | Gao Y Z, Zhang X, Zhu C, et al. Global parameter sensitivity analysis of electrochemical model for lithium-ion batteries considering aging[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(3): 1283-1294. |
| [56] | Samadi M F, Saif M. Identifiability analysis of an electrochemical model of Li-ion battery[C]//2016 American Control Conference (ACC). IEEE, 2016: 3107-3112. |
| [57] | Edouard C, Petit M, Forgez C, et al. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging[J]. Journal of Power Sources, 2016, 325: 482-494. |
| [58] | Tian A N, Dong K L, Yang X G, et al. Physics-based parameter identification of an electrochemical model for lithium-ion batteries with two-population optimization method[J]. Applied Energy, 2025, 378: 124748. |
| [59] | Saltelli A. Global Sensitivity Analysis: the Primer[M]. Hoboken: John Wiley, 2008. |
| [60] | Grandjean T R B, Li L Y, Odio M X, et al. Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2019: 1-7. |
| [61] | Sobol I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280. |
| [62] | Lin N, Xie X Z, Schenkendorf R, et al. Efficient global sensitivity analysis of 3D multiphysics model for Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(7): A1169-A1183. |
| [63] | Castro M T, Del Rosario J A D, Chong M N, et al. Multiphysics modeling of lithium-ion, lead-acid, and vanadium redox flow batteries[J]. Journal of Energy Storage, 2021, 42: 102982. |
| [64] | Tao J J, Wang S L, Cao W, et al. A comprehensive review of multiple physical and data-driven model fusion methods for accurate lithium-ion battery inner state factor estimation[J]. Batteries, 2024, 10(12): 442. |
| [65] | Wei Z B, Zhao J Y, He H W, et al. Future smart battery and management: advanced sensing from external to embedded multi-dimensional measurement[J]. Journal of Power Sources, 2021, 489: 229462. |
| [66] | Du X H, Meng J H, Peng J C, et al. Sensorless temperature estimation of lithium-ion battery based on broadband impedance measurements[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10101-10105. |
| [67] | Huang F X, Yang H, Liu B, et al. Real-time monitoring of temperature field distribution of three-element LiB lithium battery using FBG arrays[J]. IEEE Sensors Journal, 2023, 23(24): 30473-30480. |
| [68] | Murty K G, Kabadi S N. Some NP-complete problems in quadratic and nonlinear programming[J]. Mathematical Programming, 1987, 39(2): 117-129. |
| [69] | Nesterov Y, Nemirovskii A. Interior-Point Polynomial Algorithms in Convex Programming[M]. Philadelphia: SIAM Studies in Applied Mathematics, 1994. |
| [70] | Courant R. Variational methods for the solution of problems of equilibrium and vibrations[R]. Lecture Notes in Pure and Applied Mathematics, 1994. |
| [71] | Lemaréchal C. Cauchy and the gradient method[J]. Doc Math Extra, 2012, 251(254): 10. |
| [72] | Bonnans J F, Gilbert J C, Lemaréchal C, et al. Numerical Optimization: Theoretical and Practical Aspects[M]. Berlin·Heidelberg: Springer Science & Business Media, 2006. |
| [73] | Guillaume J H A, Jakeman J D, Marsili-Libelli S, et al. Introductory overview of identifiability analysis: a guide to evaluating whether you have the right type of data for your modeling purpose[J]. Environmental Modelling & Software, 2019, 119: 418-432. |
| [74] | Dennis J E Jr, Schnabel R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1996. |
| [75] | Floudas C A, Pardalos P M. Encyclopedia of Optimization [M]. 2nd ed. New York: Springer Science & Business Media, 2008. |
| [76] | Levenberg K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2(2): 164-168. |
| [77] | Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. |
| [78] | Deng Z W, Deng H, Yang L, et al. Implementation of reduced-order physics-based model and multi-parameters identification strategy for lithium-ion battery[J]. Energy, 2017, 138: 509-519. |
| [79] | Alhijawi B, Awajan A. Genetic algorithms: theory, genetic operators, solutions, and applications[J]. Evolutionary Intelligence, 2024, 17(3): 1245-1256. |
| [80] | Gen M, Lin L. Genetic Algorithms and Their Applications[M]. London: Springer, 2023: 635-674. |
| [81] | Forman J C, Moura S J, Stein J L, et al. Genetic identification and fisher identifiability analysis of the Doyle-Fuller-Newman model from experimental cycling of a LiFePO4 cell[J]. Journal of Power Sources, 2012, 210: 263-275. |
| [82] | 徐兴, 王位, 陈龙. 基于GA的车用锂离子电池电化学模型参数辨识[J]. 汽车工程, 2017, 39(7): 813-821, 838. |
| Xu X, Wang W, Chen L. Parameter identification of electrochemical model for vehicular lithium ion battery based on genetic algorithm[J]. Automotive Engineering, 2017, 39(7): 813-821, 838. | |
| [83] | Gad A G. Particle swarm optimization algorithm and its applications: a systematic review[J]. Archives of Computational Methods in Engineering, 2022, 29(5): 2531-2561. |
| [84] | Shami T M, El-Saleh A A, Alswaitti M, et al. Particle swarm optimization: a comprehensive survey[J]. IEEE Access, 2022, 10: 10031-10061. |
| [85] | Rahman M A, Anwar S, Izadian A. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method[J]. Journal of Power Sources, 2016, 307: 86-97. |
| [86] | Yang X S, Deb S. Cuckoo search via lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE, 2009: 210-214. |
| [87] | Yang X S, Deb S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330. |
| [88] | Ma X Y, Zhang W K, Yin Y, et al. Multi-objective optimization of lithium-ion battery designs considering the dilemma between energy density and rate capability[J]. Energy and AI, 2024, 18: 100416. |
| [1] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [2] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [3] | Guangzheng ZHOU, Zihan ZHONG, Yanqun HUANG, Xuezhong WANG. Intelligent monitoring of crystallization processes based on in situ imaging and image analysis [J]. CIESC Journal, 2025, 76(9): 4351-4368. |
| [4] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [5] | Xuewen LI, Zhihong WANG, Yang GAO, Ming'ou WU, Wenhao MA, Renmin TAN. Multi-objective optimization of amine-based desulfurization regeneration system integrated with heat pump technology [J]. CIESC Journal, 2025, 76(9): 4563-4577. |
| [6] | Jing ZHAO, Shuchen DONG, Gaoyang LI, Youke HUANG, Haosen SHI, Shuwen MIAO, Chenyan TAN, Tangqi ZHU, Yongshuai LI, Hui PAN, Hao LING. Simulation and optimization of battery performance based on the electrochemical model [J]. CIESC Journal, 2025, 76(9): 4922-4932. |
| [7] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [8] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [9] | Jinghao ZHANG, Yajun WANG, Yongkang ZHANG. Evaluation of chemical process operation status based on NRBO-SLSTM [J]. CIESC Journal, 2025, 76(8): 4145-4154. |
| [10] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [11] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [12] | Zhihong CHEN, Jiawei WU, Xiaoling LOU, Junxian YUN. Recent advances in machine learning for biomanufacturing of chemicals [J]. CIESC Journal, 2025, 76(8): 3789-3804. |
| [13] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [14] | Chuanfu SUN, Guilin HU, Junjie CAO, Qibin ZUO, Mei CHEN, Yuzhen XIA. ZnO-GA anode with gradient-pore distribution for lithium-ion battery [J]. CIESC Journal, 2025, 76(7): 3710-3718. |
| [15] | Xiaolong WU, Xiaohuang HUANG, Yuan XIAO, Linghai SHAN, Jiahui YE, Guomin CUI. Reserve empty node strategy applied to optimization of heat exchanger networks [J]. CIESC Journal, 2025, 76(7): 3388-3402. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||