CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6302-6313.DOI: 10.11949/0438-1157.20250429
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhangjing ZHENG(
), Qingyun YANG, Shixing YAN, Yuchen SHI, Yang XU(
)
Received:2025-04-22
Revised:2025-06-20
Online:2026-01-23
Published:2025-12-31
Contact:
Yang XU
通讯作者:
徐阳
作者简介:郑章靖(1986—),男,博士,副教授,zhengzj@cumt.edu.cn
基金资助:CLC Number:
Zhangjing ZHENG, Qingyun YANG, Shixing YAN, Yuchen SHI, Yang XU. Research on solidification characteristics of particles formed by dropping molten polyethylene glycol into oil pool[J]. CIESC Journal, 2025, 76(12): 6302-6313.
郑章靖, 杨清云, 闫室兴, 施宇辰, 徐阳. 熔融聚乙二醇滴入油池的颗粒凝固成形特性研究[J]. 化工学报, 2025, 76(12): 6302-6313.
Add to citation manager EndNote|Ris|BibTeX
| 物性参数 | 导热油 | 聚乙二醇4000 |
|---|---|---|
| 密度/(kg·m-3) | 857 | 1125 |
| 运动黏度/(mm2·s-1) | 270 (0℃),29 (40℃) | 8~11 |
| 热导率/(W·(m·K)-1) | 0.135 | 0.085 |
| 比热容/(kJ·(kg·K)-1) | 2.049 | 2.048 |
| 熔化温度/℃ | — | 46.93~62.75 |
| 凝固温度/℃ | -12 | 34.21~42.8 |
| 潜热/(kJ·kg-1) | — | 117.32 |
Table 1 The thermophysical properties of PCM and HTF
| 物性参数 | 导热油 | 聚乙二醇4000 |
|---|---|---|
| 密度/(kg·m-3) | 857 | 1125 |
| 运动黏度/(mm2·s-1) | 270 (0℃),29 (40℃) | 8~11 |
| 热导率/(W·(m·K)-1) | 0.135 | 0.085 |
| 比热容/(kJ·(kg·K)-1) | 2.049 | 2.048 |
| 熔化温度/℃ | — | 46.93~62.75 |
| 凝固温度/℃ | -12 | 34.21~42.8 |
| 潜热/(kJ·kg-1) | — | 117.32 |
| 液滴直径/mm | 油池深度/cm | 触底时间/ s | 平均速度/(m | 临界凝固层厚度比 |
|---|---|---|---|---|
| 3.9 | 21 | 4.95 | 0.0424 | 0.0827 |
| 4.2 | 25 | 5.49 | 0.0455 | 0.0802 |
| 4.9 | 28 | 5.30 | 0.0528 | 0.0672 |
Table 2 Calculation results of the thickness ratio of the critical solidification layer of the droplet
| 液滴直径/mm | 油池深度/cm | 触底时间/ s | 平均速度/(m | 临界凝固层厚度比 |
|---|---|---|---|---|
| 3.9 | 21 | 4.95 | 0.0424 | 0.0827 |
| 4.2 | 25 | 5.49 | 0.0455 | 0.0802 |
| 4.9 | 28 | 5.30 | 0.0528 | 0.0672 |
| [1] | 王秋旺. 节能与储能传递过程原理、技术与应用[J]. 中国科学: 技术科学, 2023, 53(10): 1763-1780. |
| Wang Q W. Principles, technology, and application of transfer processes for energy saving and storage[J]. Scientia Sinica(Technologica), 2023, 53(10): 1763-1780. | |
| [2] | Jegadheeswaran S, Pohekar S D. Performance enhancement in latent heat thermal storage system: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244. |
| [3] | 吴韶飞, 闫霆, 蒯子函, 等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019, 70(9): 3553-3564. |
| Wu S F, Yan T, Kuai Z H, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564. | |
| [4] | Zhang W J, Pan L, Ding D L, et al. Progress in the study of enhanced heat exchange in phase change heat storage devices[J]. ACS Omega, 2023, 8(25): 22331-22344. |
| [5] | Gasia J, Diriken J, Bourke M, et al. Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems[J]. Renewable Energy, 2017, 114: 934-944. |
| [6] | Ashok Kumar V, Arivazhagan S, Muninathan K. Experimental and computational study of melting phase-change material for energy storage in shell and tube heat exchanger[J]. Journal of Energy Storage, 2022, 50: 104614. |
| [7] | 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587. |
| Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587. | |
| [8] | Wang T Y, Liu S S, Su Y X, et al. Thermal performance of a high temperature flat plate thermal energy storage unit with multiple phase change materials[J]. Journal of Energy Storage, 2024, 98: 113003. |
| [9] | Yu C, Liu F F, Liu X D, et al. High-power-density miniaturized packed-bed thermal energy storage unit via phase change material capsules[J]. Applied Energy, 2024, 375: 124193. |
| [10] | Xie Y Y, Liu J J, Ma W, et al. Review of the heat transfer enhancement for phase change heat storage devices[J]. Journal of Energy Storage, 2024, 86: 111336. |
| [11] | Tao Y B, He Y L. Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube[J]. Applied Energy, 2015, 143: 38-46. |
| [12] | Yang J L, Yang L J, Xu C, et al. Experimental study on enhancement of thermal energy storage with phase-change material[J]. Applied Energy, 2016, 169: 164-176. |
| [13] | Wang J F, Xie H Q, Xin Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. |
| [14] | Yang X H, Guo J F, Yang B, et al. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit[J]. Applied Energy, 2020, 279: 115772. |
| [15] | Zheng Z J, Yang C, Xu Y, et al. Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity[J]. Renewable Energy, 2021, 172: 802-815. |
| [16] | Xu Y, Ren Q L, Zheng Z J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. |
| [17] | Yang X H, Niu Z Y, Guo J F, et al. Role of pin fin-metal foam composite structure in improving solidification: performance evaluation[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104775. |
| [18] | Zheng Z J, Sun Y, Chen Y, et al. Study of the melting performance of shell-and-tube latent heat thermal energy storage unit under the action of rotating finned tube[J]. Journal of Energy Storage, 2023, 62: 106801. |
| [19] | Wang W L, Guo S P, Li H L, et al. Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)[J]. Applied Energy, 2014, 119: 181-189. |
| [20] | Guo S P, Li H L, Zhao J, et al. Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage[J]. Applied Energy, 2013, 112: 1416-1423. |
| [21] | Kunkel S, Kübel-Heising F, Wunder F, et al. Vergleich dreier Latentwärmespeicherkonzepte zur effizienten Nutzung von Niedertemperaturwärme[J]. Chemie Ingenieur Technik, 2019, 91(1/2): 74-84. |
| [22] | Martin V, He B, Setterwall F. Direct contact PCM-water cold storage[J]. Applied Energy, 2010, 87(8): 2652-2659. |
| [23] | Mulyono P. Direct contact thermal energy storage system using Na2CO3·10H2O solution[J]. Energy, 2004, 29(12/13/14/15): 2573-2583. |
| [24] | Belusko M, Sheoran S, Bruno F. Effectiveness of direct contact PCM thermal storage with a gas as the heat transfer fluid[J]. Applied Energy, 2015, 137: 748-757. |
| [25] | Guo S P, Zhao J, Wang W L, et al. Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container[J]. Applied Thermal Engineering, 2015, 78: 556-564. |
| [26] | Kunkel S, Schütz P, Wunder F, et al. Channel formation and visualization of melting and crystallization behaviors in direct‐contact latent heat storage systems[J]. International Journal of Energy Research, 2020, 44(6): 5017-5025. |
| [27] | Fan D H, Zhao W X, Tian Y C, et al. Ejection and breakup behaviors of a novel direct contact thermal storage using ejection PCM[J]. Journal of Energy Storage, 2021, 36: 102409. |
| [28] | Wei J J, Kawaguchi Y, Hirano S, et al. Study on a PCM heat storage system for rapid heat supply[J]. Applied Thermal Engineering, 2005, 25(17/18): 2903-2920. |
| [29] | Alexiades V, Solomon A D. Mathematical Modeling of Melting and Freezing Processes[M]. 1st ed. Washington, D.C: Hemisphere Publishjing Corporation, 1993: 149. |
| [30] | Whitaker S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles[J]. AIChE Journal, 2004, 18(2): 361-371. |
| [1] | Shengmei ZHANG, Ming LI, Ying ZHANG, Xi YI, Yiting YANG, Yali LIU. Effects of emulsifier and reacting temperature on characteristics of phase change microcapsules [J]. CIESC Journal, 2025, 76(S1): 444-452. |
| [2] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [3] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [4] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [5] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [6] | Yutao WANG, Jianying GONG, Xiangyu LI, Xin WU, Xiufang LIU. Study on directionally propelled droplet based on the piezoelectric-acoustic streaming effect [J]. CIESC Journal, 2025, 76(S1): 181-186. |
| [7] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [8] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [9] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [10] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [11] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [12] | Haoran SUN, Chengyun WU, Yanmeng WANG, Jingnan SUN, Renyu HU, Zhongdi DUAN. Modeling and experimental study on the evaporation characteristics of liquid droplets subject to thermal convection [J]. CIESC Journal, 2025, 76(S1): 123-132. |
| [13] | Xin WU, Jianying GONG, Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG. Experimental study on the droplet motion on the hydrophobic surface under ultrasonic excitation [J]. CIESC Journal, 2025, 76(S1): 133-139. |
| [14] | Wei SU, Dahai ZHAO, Xu JIN, Zhongyan LIU, Jing LI, Xiaosong ZHANG. Delaying condensation frosting using biphilic surfaces coupled with spatial control of liquid desiccant [J]. CIESC Journal, 2025, 76(S1): 140-151. |
| [15] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||