CIESC Journal

   

Integration of wavelet scattering transform and artificial neural networks for online monitoring of antibody aggregates by Raman spectrum

Akang TONG1(), Liangzhi QIAO1, Dong GAO2, Haibin WANG2, Haibin QU3, Shanjing YAO1, Dongqiang LIN1()   

  1. 1.Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
    2.Bioray Pharmaceutical (Hangzhou) Co. , Ltd. , Hangzhou 311404, Zhejiang, China
    3.College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
  • Received:2025-06-07 Revised:2025-10-02 Published:2025-10-13
  • Contact: Dongqiang LIN

结合小波散射变换和人工神经网络的拉曼光谱在线监测抗体聚集体

童阿康1(), 乔亮智1, 高栋2, 王海彬2, 瞿海斌3, 姚善泾1, 林东强1()   

  1. 1.生物质化工教育部重点实验室,浙江大学化学工程与生物工程学院,浙江 杭州 310058
    2.杭州博之锐生物制药有限公司,浙江 杭州 311404
    3.浙江大学药学院,浙江 杭州 310058
  • 通讯作者: 林东强
  • 作者简介:童阿康(2000—),男,硕士研究生,akraman@foxmail.com
  • 基金资助:
    浙江省重点研发计划(2023C03116);国家自然科学基金项目(22078286);国家重点研发计划(2021YFE0113300)

Abstract:

Online monitoring the product quality attributes is critical in biopharmaceutical manufacturing. Although Raman spectrum has emerged as a promising online monitoring tool, the inherent complexity of its spectral signals poses significant challenges for the prediction of the product quality attributes. This study developed a novel modeling method that integrates wavelet scattering transform and artificial neural network (ST-ANN) to dynamically monitor the concentration of antibody monomer and aggregate for flow-through chromatography. Compared with conventional approaches, such as partial least squares regression, K-nearest neighbors, artificial neural networks, and convolutional neural networks, the ST-ANN model showed an improved predictive performance with the determination coefficients of 0.982 for both monomer and aggregate in test sets. The ST-ANN model had an improved predictive capacity, which is promising as new modeling method for online monitoring with Raman spectrum in biopharmaceutical downstream bioprocesses.

Key words: Raman spectrum, online monitoring, artificial neural networks, wavelet scattering transform, monoclonal antibody, antibody aggregate

摘要:

在生物制药过程中,实时监测产品质量属性至关重要,拉曼光谱作为一种在线监测技术,面临复杂信号带来的建模挑战。本文提出了一种结合小波散射变换和人工神经网络(ST-ANN)的建模方法,用于在线监测流穿模式层析过程中的抗体单体与聚集体浓度变化。结果表明,相较于传统的偏最小二乘回归、K-最近邻、人工神经网络和卷积神经网络模型,ST-ANN对验证集的预测误差显著降低,单体和聚集体的测试集决定系数R2均达到0.982。ST-ANN展现出更强的泛化能力,为拉曼光谱应用于生物制药下游分离过程在线监测提供了新的建模方法。

关键词: 拉曼光谱, 在线监测, 人工神经网络, 小波散射变换, 单克隆抗体, 抗体聚集体

CLC Number: