Akang TONG1(
), Liangzhi QIAO1, Dong GAO2, Haibin WANG2, Haibin QU3, Shanjing YAO1, Dongqiang LIN1(
)
Received:2025-06-07
Revised:2025-10-02
Published:2025-10-13
Contact:
Dongqiang LIN
童阿康1(
), 乔亮智1, 高栋2, 王海彬2, 瞿海斌3, 姚善泾1, 林东强1(
)
通讯作者:
林东强
作者简介:童阿康(2000—),男,硕士研究生,akraman@foxmail.com
基金资助:CLC Number:
Akang TONG, Liangzhi QIAO, Dong GAO, Haibin WANG, Haibin QU, Shanjing YAO, Dongqiang LIN. Integration of wavelet scattering transform and artificial neural networks for online monitoring of antibody aggregates by Raman spectrum[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250612.
童阿康, 乔亮智, 高栋, 王海彬, 瞿海斌, 姚善泾, 林东强. 结合小波散射变换和人工神经网络的拉曼光谱在线监测抗体聚集体[J]. 化工学报, DOI: 10.11949/0438-1157.20250612.
Add to citation manager EndNote|Ris|BibTeX
| 实验序号 | 单抗总浓度 (g/L) | 聚集体含量 (%) |
|---|---|---|
| 1 | 12.48 | 7.20 |
| 2 | 11.19 | 7.40 |
| 3 | 10.41 | 8.45 |
| 4 | 10.13 | 8.87 |
| 5 | 8.18 | 10.56 |
Table 1 Concentrations of mAb monomers and aggregates in the chromatographic experiments
| 实验序号 | 单抗总浓度 (g/L) | 聚集体含量 (%) |
|---|---|---|
| 1 | 12.48 | 7.20 |
| 2 | 11.19 | 7.40 |
| 3 | 10.41 | 8.45 |
| 4 | 10.13 | 8.87 |
| 5 | 8.18 | 10.56 |
| 模型 | 研究对象 | 光谱采集时间 s | MAE g/L | 文献 |
|---|---|---|---|---|
| KNN | 单体 聚集体 | 22.5 | 1.08 1.05 | [ |
| CNN | 聚集体 | 38 | 0.76 | [ |
| 2D-KNN | 单体 聚集体 | 30 | 3.40 0.10 | [ |
| ST-ANN | 单体 聚集体 | 12 | 0.34 0.03 | 本研究 |
Table 2 Comparison of real-time Raman spectrum monitoring in mAb chromatographic purification process
| 模型 | 研究对象 | 光谱采集时间 s | MAE g/L | 文献 |
|---|---|---|---|---|
| KNN | 单体 聚集体 | 22.5 | 1.08 1.05 | [ |
| CNN | 聚集体 | 38 | 0.76 | [ |
| 2D-KNN | 单体 聚集体 | 30 | 3.40 0.10 | [ |
| ST-ANN | 单体 聚集体 | 12 | 0.34 0.03 | 本研究 |
| [1] | Chan A C, Carter P J. Therapeutic antibodies for autoimmunity and inflammation[J]. Nature Reviews Immunology, 2010, 10(5): 301-316. |
| [2] | Vázquez-Rey M, Lang D A. Aggregates in monoclonal antibody manufacturing processes[J]. Biotechnology and Bioengineering, 2011, 108(7): 1494-1508. |
| [3] | Bansal R, Gupta S, Rathore A S. Analytical platform for monitoring aggregation of monoclonal antibody therapeutics[J]. Pharmaceutical Research, 2019, 36(11): 152. |
| [4] | Arosio P, Barolo G, Müller-Späth T, et al. Aggregation stability of a monoclonal antibody during downstream processing[J]. Pharmaceutical Research, 2011, 28(8): 1884-1894. |
| [5] | São Pedro M N, Klijn M E, Eppink M H, et al. Process analytical technique (PAT) miniaturization for monoclonal antibody aggregate detection in continuous downstream processing[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(9): 2347-2364. |
| [6] | Makki A A, Massot V, Byrne H J, et al. Understanding the discrimination and quantification of monoclonal antibodies preparations using Raman spectroscopy[J]. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194: 113734. |
| [7] | Guo S X, Beleites C, Neugebauer U, et al. Comparability of Raman spectroscopic configurations: a large scale cross-laboratory study[J]. Analytical Chemistry, 2020, 92(24): 15745-15756. |
| [8] | Yilmaz D, Mehdizadeh H, Navarro D, et al. Application of Raman spectroscopy in monoclonal antibody producing continuous systems for downstream process intensification[J]. Biotechnology Progress, 2020, 36(3): e2947. |
| [9] | Wang J R, Chen J Y, Studts J, et al. Automated calibration and in-line measurement of product quality during therapeutic monoclonal antibody purification using Raman spectroscopy[J]. Biotechnology and Bioengineering, 2023, 120(11): 3288-3298. |
| [10] | Wang J R, Chen J Y, Studts J, et al. In-line product quality monitoring during biopharmaceutical manufacturing using computational Raman spectroscopy[J]. mAbs, 2023, 15: 2220149. |
| [11] | Shen J H, Li M, Li Z F, et al. Single convolutional neural network model for multiple preprocessing of Raman spectra[J]. Vibrational Spectroscopy, 2022, 121: 103391. |
| [12] | Ho C S, Jean N, Hogan C A, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nature Communications, 2019, 10: 4927. |
| [13] | Poth M, Magill G, Filgertshofer A, et al. Extensive evaluation of machine learning models and data preprocessings for Raman modeling in bioprocessing[J]. Journal of Raman Spectroscopy, 2022, 53(9): 1580-1591. |
| [14] | Nitika N, Keerthiveena B, Thakur G, et al. Convolutional neural networks guided Raman spectroscopy as a process analytical technology (PAT) tool for monitoring and simultaneous prediction of monoclonal antibody charge variants[J]. Pharmaceutical Research, 2024, 41(3): 463-479. |
| [15] | Liu Y, Brown S D. Wavelet multiscale regression from the perspective of data fusion: new conceptual approaches[J]. Analytical and Bioanalytical Chemistry, 2004, 380(3): 445-452. |
| [16] | Rolinger L, Rüdt M, Hubbuch J. Comparison of UV- and Raman-based monitoring of the Protein A load phase and evaluation of data fusion by PLS models and CNNs[J]. Biotechnology and Bioengineering, 2021, 118(11): 4255-4268. |
| [17] | Mallat S. Group invariant scattering[J]. Communications on Pure and Applied Mathematics, 2012, 65(10): 1331-1398. |
| [18] | Lone A W, Aydin N. Wavelet scattering transform based Doppler signal classification[J]. Computers in Biology and Medicine, 2023, 167: 107611. |
| [19] | Bruna J, Mallat S. Invariant scattering convolution networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1872-1886. |
| [20] | Ding Z W, Zhang C F, Huang X, et al. Recognition method of coal–rock reflection spectrum using wavelet scattering transform and bidirectional long–short-term memory[J]. Rock Mechanics and Rock Engineering, 2024, 57(2): 1353-1374. |
| [21] | 余星辰,李小伟. 基于小波散射变换的煤矿瓦斯和煤尘爆炸声音识别方法[J]. 煤炭科学技术, 2024, 52(S1): 70-79. |
| Yu X C, Li X W. Sound identification method of coal mine gas and coal dust explosion based on wavelet scattering transform[J]. Coal Science and Technology, 2024, 52(S1): 70-79. | |
| [22] | Andreux M, Angles T, Exarchakis G, et al. Kymatio: Scattering transforms in python[A]. arXiv, 2018[2025-04-28]. . |
| [23] | Khodabandehlou H, Rashedi M, Wang T, et al. Cell culture product quality attribute prediction using convolutional neural networks and Raman spectroscopy[J]. Biotechnology and Bioengineering, 2024, 121(4): 1230-1242. |
| [24] | Li M-Y, Ebel B, Paris C, et al. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures[J]. Biotechnology Progress, 2018, 34(2): 486-493. |
| [25] | Rashedi M, Khodabandehlou H, Wang T, et al. Integration of just-in-time learning with variational autoencoder for cell culture process monitoring based on Raman spectroscopy[J]. Biotechnology and Bioengineering, 2024, 121(7): 2205-2224. |
| [26] | Chen D, Chen Z W, Grant E R. Adaptive multiscale regression for reliable Raman quantitative analysis[J]. The Analyst, 2012, 137(1): 237-244. |
| [27] | Perezmarin D, Garridovaro A, Guerrero J. Non-linear regression methods in NIRS quantitative analysis[J]. Talanta, 2007, 72(1): 28-42. |
| [28] | Chen Z L, Jia K, Xiao C C, et al. Leaf area index estimation algorithm for GF-5 hyperspectral data based on different feature selection and machine learning methods[J]. Remote Sensing, 2020, 12(13): 2110. |
| [29] | Cui C H, Fearn T. Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 182: 9-20. |
| [30] | Zhang C, Springall J S, Wang X Y, et al. Rapid, quantitative determination of aggregation and particle formation for antibody drug conjugate therapeutics with label-free Raman spectroscopy[J]. Analytica Chimica Acta, 2019, 1081: 138-145. |
| [31] | Wang J R, Chen J Y, Studts J, et al. Simultaneous prediction of 16 quality attributes during protein A chromatography using machine learning based Raman spectroscopy models[J]. Biotechnology and Bioengineering, 2024, 121(5): 1729-1738. |
| [32] | Stone M T, Cotoni K A, Stoner J L. Cation exchange frontal chromatography for the removal of monoclonal antibody aggregates[J]. Journal of Chromatography A, 2019, 1599: 152-160. |
| [1] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
| [2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
| [3] | Yong LI, Fei LIU, Haifeng DONG, Xiangping ZHANG, Jingrong CHEN, Rencai LIU, Shao JIN, Zhanpeng WU, Xiaodong WANG. Application of micro particle real-time online analyzer in solid-liquid system measurement [J]. CIESC Journal, 2019, 70(S2): 181-190. |
| [4] | SHI Ce, YU Ji, GAO Dong, WANG Haibin, YAO Shanjing, LIN Dongqiang. Process simulation and economic evaluation of monoclonal antibody production [J]. CIESC Journal, 2018, 69(7): 3198-3207. |
| [5] | LU Huili, LIN Dongqiang, YAO Shanjing. Chromatographic technology in antibody purification and its progress [J]. CIESC Journal, 2018, 69(1): 341-351. |
| [6] | CAO Shengxian, ZHAO Zhenchao, LI Sibo, CHEN Yanfei, FU Congwei, REN Jibing, FENG Baozhu. Development of online monitoring and evaluation device for treatment of circulating cooling water [J]. CIESC Journal, 2015, 66(7): 2649-2655. |
| [7] | LI Jing, LIN Dongqiang, TONG Hongfei, YAO Shanjing, YE Shuaidong, CUI Jiayou. Separation and purification of anti-HER2 monoclonal antibody with hydrophobic charge-induction chromatography [J]. CIESC Journal, 2014, 65(10): 3931-3937. |
| [8] | BO Yingchun, XIA Bokai. Heuristic dynamical programming control for catalyst baking furnace temperature [J]. CIESC Journal, 2013, 64(12): 4615-4620. |
| [9] | GAO Yue,XU Xing,GAO Baoyu,YUE Qinyan. Preparation,characteristics and adsorption properties of anion resin prepared from biomass [J]. CIESC Journal, 2012, 63(1): 301-306. |
| [10] | Juan A. Lazzús. Prediction of Flash Point Temperature of Organic Compounds Using a Hybrid Method of Group Contribution+Neural Network+Particle Swarm Optimization [J]. , 2010, 18(5): 817-823. |
| [11] | Hajir Karimi, Fakhri Yousefi. Correlation of vapour liquid equilibria of binary mixtures using artificial neural networks [J]. , 2007, 15(5): 765-771. |
| [12] | CONG Jinyang, CHEN Wei. PURIFICATION OF RECOMBINANT HUMAN INTERFERON-γ BY IMMUNOAFFINITY CHROMATOGRAPHY WITH MONOCLONAL ANTIBODY [J]. , 1995, 3(3): 125-133. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||