CIESC Journal ›› 2019, Vol. 70 ›› Issue (S2): 181-190.DOI: 10.119494/0438-1157.20190175
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yong LI1(),Fei LIU2(),Haifeng DONG3,Xiangping ZHANG3,Jingrong CHEN1,Rencai LIU1,Shao JIN2,Zhanpeng WU2,Xiaodong WANG1()
Received:
2019-03-03
Revised:
2019-04-22
Online:
2019-09-06
Published:
2019-09-06
Contact:
Xiaodong WANG
李勇1(),刘飞2(),董海峰3,张香平3,陈靖容1,刘仁材1,金劭2,吴战鹏2,王晓东1()
通讯作者:
王晓东
作者简介:
李勇(1991—),男,硕士研究生,基金资助:
CLC Number:
Yong LI, Fei LIU, Haifeng DONG, Xiangping ZHANG, Jingrong CHEN, Rencai LIU, Shao JIN, Zhanpeng WU, Xiaodong WANG. Application of micro particle real-time online analyzer in solid-liquid system measurement[J]. CIESC Journal, 2019, 70(S2): 181-190.
李勇, 刘飞, 董海峰, 张香平, 陈靖容, 刘仁材, 金劭, 吴战鹏, 王晓东. 微颗粒实时在线监测仪在固液体系测量中的应用[J]. 化工学报, 2019, 70(S2): 181-190.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.119494/0438-1157.20190175
分类 | 测量方法 | 局限性 |
---|---|---|
非接触式方法 | 激光散射法,激光束图像分析法,光束衰减法 | 要求反应容器和液相透明,限制工业应用 |
粒子图像测速技术,激光多普勒测速技术,超声多普勒测速技术 | 只能直接获取颗粒速度信息 | |
接触式方法 | 取样法 | 迟滞性,非等动力取样 |
电导法 | 要求高纯度液相和恒温,限制工业应用 | |
光学探针法 | 只能获得局部区域的平均值 |
Table 1 Comparison of measurement methods
分类 | 测量方法 | 局限性 |
---|---|---|
非接触式方法 | 激光散射法,激光束图像分析法,光束衰减法 | 要求反应容器和液相透明,限制工业应用 |
粒子图像测速技术,激光多普勒测速技术,超声多普勒测速技术 | 只能直接获取颗粒速度信息 | |
接触式方法 | 取样法 | 迟滞性,非等动力取样 |
电导法 | 要求高纯度液相和恒温,限制工业应用 | |
光学探针法 | 只能获得局部区域的平均值 |
颗粒名称 | 关键物性 | 生产单位 |
---|---|---|
乳胶标准微颗粒 | 粒度分布:标称值 120 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
乳胶标准微颗粒 | 粒度分布:标称值160 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
球形Al2O3颗粒CAP 90① | 粒度D50:90 μm;密度:3.5 g/cm3 | 南京天行新材料有限公司 |
ZrO2颗粒 | 粒度D50:100 μm;密度:5.85 g/cm3 | 浙江湖州湖磨有限公司 |
Table 2 Particle sizes and physical parameters selected in experiment
颗粒名称 | 关键物性 | 生产单位 |
---|---|---|
乳胶标准微颗粒 | 粒度分布:标称值 120 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
乳胶标准微颗粒 | 粒度分布:标称值160 μm;密度:略大于水 | 北京海岸鸿蒙标准物质技术有限责任公司 |
球形Al2O3颗粒CAP 90① | 粒度D50:90 μm;密度:3.5 g/cm3 | 南京天行新材料有限公司 |
ZrO2颗粒 | 粒度D50:100 μm;密度:5.85 g/cm3 | 浙江湖州湖磨有限公司 |
1 | BarresiA, BaldiG. Solid dispersion in an agitated vessel: effect of particle shape and density[J]. Chemical Engineering Science, 1987, 42(12): 2969-2972. |
2 | 杨锋苓, 周慎杰, 张翠勋, 等. 无挡板搅拌槽的固液悬浮特性[J]. 四川大学学报(工程科学版), 2014, 44(4): 185-190. |
YangF L, ZhouS J, ZhangC X, et al. Solid-liquid suspension in an unbaffled stirred tank[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 44(4): 185-190. | |
3 | NienowA W, MilesD. The effect of impeller/tank, configurations on fluid-particle mass transfer[J]. Chemical Engineering Journal, 1978, 15(1): 13-24. |
4 | KlenovO P, NoskovA S. Solid dispersion in the slurry reactor with multiple impellers[J]. Chemical Engineering Journal, 2011, 176(8): 75-82. |
5 | TagawaA, DohiN, KawaseY. Dispersion of floating solid particles in aerated stirred tank reactors: minimum impeller speeds for off-surface and ultimately homogeneous solid suspension and solids concentration profiles[J]. Industrial & Engineering Chemistry Research, 2006, 45(2): 818-829. |
6 | 李永纲, 黄雄斌. 立式圆槽内多轴搅拌器固-液悬浮性能[J]. 过程工程学报, 2012, 12(2): 181-186. |
LiY G, HuangX B. Solid-liquid suspension in a vertical three-impeller stirred tank[J]. The Chinese Journal of Process Engineering, 2012, 12(2): 181-186. | |
7 | ZwieteringT N. Suspending of solid particles in liquid by agitators[J]. Chemical Engineering Science, 1958, 8(3/4): 244-253. |
8 | RasteiroM G, FigueiredoM M, FreireC. Modelling slurry mixing tanks[J]. Advanced Powder Technology, 1994, 5(1): 1-14. |
9 | EngM , RasmusonA. Large eddy simulation of the influence of solids on macro instability frequency in a stirred tank[J]. Chemical Engineering Journal, 2015, 259: 900-910. |
10 | Lopezd B M, LaheyR T J, JonesO C. Turbulent bubbly two-phase flow data in a triangular duct[J]. Nuclear Engineering & Design, 1994, 146(1/2/3): 43-52. |
11 | FengX, LIX Y, ChengJ C, et al. Numerical simulation of solid-liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model[J]. Chem. Eng. Sci., 2012, 82: 272-284. |
12 | FerreiraP J, RasteiroM G, FigueiredoM M. A new approach to measuring solids concentration in mixing tanks[J]. Advanced Powder Technology, 1994, 5(1): 15-24. |
13 | TamburiniA, CipollinaA, MicaleG, et al. Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique[J]. Chemical Engineering Science, 2013, 87(Complete): 341-358. |
14 | BarresiA, BaldiG. Solid dispersion in an agitated vessel: effect of particle shape and density[J]. Chemical Engineering Science, 1987, 42(12): 2969-2972. |
15 | 黄雄斌, 闫宪斌, 施力田, 等. 固液搅拌槽内液相速度的分布[J]. 化工学报, 2002, 53(7): 717-722. |
HuangX B, YanX B, ShiL T, et al. Liquid velocity distributions in solid-liquid stirred vessels[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(7): 717-722. | |
16 | 单贤根, 禹耕之, 杨超, 等. 无挡板搅拌槽中液-固体系的分散特性[J]. 过程工程学报, 2008, 8(1): 1-7. |
ShanX G, YuG Z, YangC, et al. Dispersion characteristics of solid-liquid suspension in an unbaffled stirred tank[J]. The Chinese Journal of Process Engineering, 2008, 8(1): 1-7. | |
17 | BarresiA, BaldiG. Solid dispersion in an agitated vessel[J]. Chemical Engineering Science, 1987, 42(12): 2949-2956. |
18 | ZhangH , JohnstonP M , ZhuJ X , et al. A novel calibration procedure for a fiber optic solids concentration probe[J]. Powder Technology, 1998, 100(2/3): 260-272. |
19 | 廖艳飞, 王晓东, 那贤昭. 金属液纯净度的原位、在线、定量监测方法——LiMCA技术回顾与展望[J].中国测试, 2016, 42(2): 1-8. |
LiaoY F, WangX D, NaX Z. In situ, online and quantitative monitoring of liquid metal cleanliness method —review and prospect of LiMCA [J] . China Measurement & Testing Technology, 2016, 42(2): 1-8. | |
20 | MeiZ , ChoS H , ZhangA , et al. Counting leukocytes from whole blood using a lab-on-a-chip Coulter counter[C]// International Conference of the IEEE Engineering in Medicine & Biology Society. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012. |
21 | RhynerM N. The coulter principle for analysis of subvisible particles in protein formulations[J]. The AAPS Journal, 2011, (1): 54-58 |
22 | JohnL A, JohnA Q. The relationship between particle size and signal in coulter-type counters[J]. Review of Scientific Instruments , 1971, 42: 1257. |
23 | WangX D, MihaielaI, RoderickI L. Numerical studies on the in-situ measurement of inclusions in liquid steel using the E.S.Z. or LiMCA technique [J]. ISIJ International, 2009, 49 (7): 975-984. |
24 | DeBloisR W, BeanC P. Counting and sizing of submicron particles by the resistive pulse technique[J].Review of Scientific Instruments, 1970, 41(7): 909-916. |
25 | LiessM, SchulzR, NeumannM. A method for monitoring pesticides bound to suspended particles in small streams[J]. Chemosphere, 1996, 32(10): 1963-1969. |
26 | CleaverJ W, YatesB. A sub layer model for the deposition of particles from a turbulent flow[J]. Chemical Engineering Science, 1975, 30(8): 983-992. |
27 | LiA. Aerosol particle deposition in an obstructed turbulent duct flow[J]. J. Aerosol. Sci., 1994, 25(1): 91-112. |
28 | LiA, AhmadiG. Deposition of aerosols on surfaces in a turbulent channel flow[J]. Int. J. Eng. Sci., 1993, 31(3): 435-451. |
29 | DebloisR W, BeanC P, WesleyR K A. Electrokinetic measurements with submicron particles and pores by the resistive pulse technique[J]. Journal of Colloid and Interface Science, 1977, 61(2): 323-335. |
30 | NieD M, LinJ Z, ChenR Q. Grouping behavior of coaxial settling particles in a narrow channel[J]. Physical Review E, 2016, 93(1): 013114 |
31 | VerjusR, GuillouS, EzerskyA, et al. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: multiple states and routes to chaos[J]. Physics of Fluids, 2016, 28(12): 123303. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[7] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[10] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[11] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[12] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[13] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[14] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[15] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||