CIESC Journal ›› 2013, Vol. 64 ›› Issue (12): 4615-4620.DOI: 10.3969/j.issn.0438-1157.2013.12.051

Previous Articles     Next Articles

Heuristic dynamical programming control for catalyst baking furnace temperature

BO Yingchun, XIA Bokai   

  1. College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2013-08-30 Revised:2013-09-10 Online:2013-12-05 Published:2013-12-05
  • Supported by:

    supported by the National Natural Science Foundation of China (60873043).

催化剂窑炉温度的启发式动态规划控制

薄迎春, 夏伯锴   

  1. 中国石油大学(华东)信息与控制工程学院, 山东 青岛 266580
  • 通讯作者: 薄迎春
  • 作者简介:薄迎春(1977- ),男,博士,讲师。
  • 基金资助:

    国家自然科学基金项目(60873043)。

Abstract: To solve the temperature control problem of the catalyst baking furnace,a heuristic dynamical programming (HDP) control method is proposed.The optimal control policy in HDP scheme is approximated gradually by implementing policy evaluation and policy improvement repeatedly.The system dynamics and the critic model are established by artificial neural networks.The learning algorithm of the HDP controller is clarified based on the gradient-decent principle.The proposed controller is tested on a baking furnace in a certain catalyst company.The experimental results indicate that the HDP controller has stronger ability to accommodate different work conditions than PID controller.In comparison with PID controller,the control precision in HDP controller increases about 70%,and the average electric current in HDP controller decreases about 5%.

Key words: catalyst, temperature control, heuristic dynamical programming, artificial neural networks

摘要: 针对催化剂生产过程中焙烧窑炉温度控制问题,提出了一种启发式动态规划(heuristic dynamical programming,HDP)控制方法。该方法通过策略评价及策略提升的重复进行逐渐逼近最优的控制策略。采用人工神经网络建立了被控系统和评价指标模型,基于梯度下降原理阐明了控制器各模块的在线学习方法。对某催化剂公司的窑炉温度控制实验表明,与常规PID控制相比,HDP控制方案具有较强的工况适应能力,其控制精度较常规控制提高约70%,加热电流均值减小约5%。

关键词: 催化剂, 温度控制, 启发式动态规划, 人工神经网络

CLC Number: