[1] |
Vaiopoulou E, Melidis P, Aivasidis A. Sulfide removal in wastewater from petrochemical industries by autotrophic denitrificafion [J]. Wat. Res., 2005, 39(17): 4101-4109
|
[2] |
De Lomas J G, Corzo A, Genzalez J M. Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant-scale [J]. Biotechnol. Bioeng., 2006, 93(4): 801-811
|
[3] |
Mizuno O, Tkagi H, Noike T. Biological sulfate removal in anaerobic bioreactor with an ultrafiltration membrane system [J]. Water Science Technology, 1998, 38: 513-520
|
[4] |
Kobayashi H A. Use of photosynthetic bacteria for hydrogen sulphide removal from anaerobic waste treatment effluent [J]. Water Res., 1983,17(5): 473-497
|
[5] |
Xu Guoqiang(许国强), Zeng Guangming(曾光明),Yin Zhiwei(殷志伟), Zhang Jianfeng(张剑锋). Recent advances on the treatment technologics of ammonia-nitrogen wastewater [J]. Hunan Nonferrous Metals(湖南有色金属), 2002, 18(2): 29-33
|
[6] |
Nakhla G F, Lugowski A, Sverdlikov A. Simultaneous nitrification- denitrification and clarification in a pseudoliquified activated sludge system [J]. Water Environment Research, 2005, 77(1): 98-112
|
[7] |
Reyes-Avilla J, Razo-Flores E, Gomez J. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification [J]. Wat. Res., 2004, 38(14/15): 3313-3321
|
[8] |
Chen Chuan, Liu Lihong, Lee Duu-Jong. Integrated simultaneous desulfurization and denitrification (ISDD) process at various COD/sulfate ratios [J]. Bioresource Technology, 2014, 155: 161-169
|
[9] |
Yu Hao, Chen Chuan, Ma Jincai. Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor [J]. Journal of Environmental Sciences- China, 2014, 26(5): 1099-1107
|
[10] |
Guo Hongliang, Chen Chuan, Lee Duu-Jong. Sulfur-nitrogen-carbon removal of Pseudomonas sp. C27 under sulfide stress [J]. Enzyme and Microbial Technology, 2013, 51(1): 6-12
|
[11] |
Lee Duu-Jong, Wong Biing-Teo. Denitrifying sulfide removal by enriched microbial consortium: kinetic diagram [J]. Bioresource Technology, 2014, 164: 386-393
|
[12] |
Xu Xijun, Chen Chuan, Lee Duu-Jong. Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation [J]. Bioresource Technology, 2014, 117(1): 71-74
|
[13] |
Yang Guangfeng(阳广凤). The typical inhibition of anammox and its control strategy [D]. Hangzhou: Hangzhou Normal University, 2012
|
[14] |
Xing Baoshan(邢保山), Chen Shenxing(陈伸星), Zheng Ping(郑平), Hu Baolan(胡宝兰), Xu Xiangyang(徐向阳), Jin Rencun(金仁村). Research progress on combined process and coupling technique for simultaneous biological removal of carbon, nitrogen and sulfur [J]. CIESC Journal (化工学报), 2013, 64(11): 3881-3887
|
[15] |
Yang Guangfeng, Jin Rencun. Reactivation of effluent granular sludge from a high-rate Anammox reactor after storage [J]. Biodegradation, 2013, 24(1): 13-32
|
[16] |
Li Wei, Zheng Ping, Zhang Jiqiang. The effect of substrate concentration fluctuation on the performance of high-rate denitrifying reactor [J]. Bioresource Technology, 2014, 167: 53-60
|
[17] |
Wang Lan, Zheng Ping, Xing Yajuan. Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms [J]. Bioresource Technology, 2014, 157: 240-246
|
[18] |
Tang Chongjian, Zheng Ping, Ding Shuang. Enhanced nitrogen removal from ammonium-rich wastewater containing high organic contents by coupling with novel high-rate ANAMMOX granules addition [J]. Chemical Engineering Journal, 2014, 240: 454-461
|
[19] |
Cong Liying(丛丽影), Zhang Daijun(张代钧), Ren Hongyang(任宏洋). Impacting factors of coupling aerobic and anaerobic ammonium oxidation in granular sludge [J].Chinese Journal of Environmental Engineering(环境工程学报), 2009, 3(6): 990-994
|