CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 170-191.DOI: 10.11949/0438-1157.20221071

• Reviews and monographs • Previous Articles     Next Articles

Kinetic regulation strategies in lithium-sulfur batteries

Xun JIAO1(), Cheng TONG1, Cunpu LI1,2(), Zidong WEI1,2()   

  1. 1.School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    2.Suining Lithium Battery Research Institute of Chongqing University (SLiBaC), Suining 629000, Sichuan, China
  • Received:2022-08-01 Revised:2022-12-12 Online:2023-03-20 Published:2023-01-05
  • Contact: Cunpu LI, Zidong WEI

锂硫电池的动力学调控策略

焦巡1(), 童成1, 李存璞1,2(), 魏子栋1,2()   

  1. 1.重庆大学化学化工学院,重庆 400044
    2.重庆大学锂电及新材料遂宁研究院,四川 遂宁 629000
  • 通讯作者: 李存璞,魏子栋
  • 作者简介:焦巡(1995—),女,博士研究生,20211801052@cqu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22075033)

Abstract:

Lithium-sulfur (Li-S) batteries are expected to be one of the candidates for next-generation high-energy-density batteries because of their ultra-high theoretical energy density (2600 Wh·kg-1). However, it suffers from low sulfur utilization, rapid capacity fading, and the “lost effect” of lithium polysulfides (LiPSs). These problems make the reaction kinetics of Li-S batteries sluggish, severely limiting their practical applications. Methods such as physical confinement and chemical adsorption can accelerate the redox reaction between sulfur, LiPSs, and Li2S, reduce the loss of LiPSs, and accelerate the kinetic process, which enable the battery with high energy density and long-cycle stability. Based on the overall electrochemical reaction process, this article reviews how materials used in recent years can facilitate the kinetic process, prevent the loss of LiPSs, and evaluate the corresponding strategies. The purpose of this review is to help guide the rational design of improved battery kinetics and the practical application of Li-S batteries.

Key words: lithium-sulfur batteries, kinetics, lithium polysulfides, electrochemistry, adsorption, catalysis, lost effect

摘要:

锂硫(Li-S)电池因其超高的理论能量密度(2600 Wh·kg-1)有望成为下一代高能量密度电池的候选者之一。然而,它存在硫利用率低、容量衰减快以及多硫化锂(LiPSs)发生“流失效应”等问题,这使得Li-S电池反应动力学缓慢,严重限制了其实际应用。物理限制、化学吸附等方法可以加速硫、LiPSs和Li2S之间的氧化还原反应,减少LiPSs的流失,加速动力学过程,使电池具有高能量密度和长循环稳定性。基于整体电化学反应过程,对近些年使用的材料如何促进动力学进程、阻止LiPSs的流失,以及相应策略的评价进行了综述,以指导提升电池动力学性能的合理设计和Li-S电池的实际应用。

关键词: 锂硫电池, 动力学, 多硫化锂, 电化学, 吸附, 催化, 流失效应

CLC Number: