CIESC Journal ›› 2015, Vol. 66 ›› Issue (4): 1370-1377.DOI: 10.11949/j.issn.0438-1157.20141180

Previous Articles     Next Articles

LTSA and combined index based non-Gaussian process monitoring and application

YANG Zhengyong1, WANG Xin2, WANG Zhenlei1   

  1. 1. Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China;
    2. Center of Electrical & Electronic Technology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2014-08-05 Revised:2014-12-08 Online:2015-04-05 Published:2015-04-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61134007), the National High Technology Research and Development Program of China (2013AA040701), the Shanghai Scientific and Technological Project (12dz1125100), the Shanghai "Technology Innovation Action Plan" Development Platform for Building Projects (13DZ2295300), the Shanghai Natural Science Foundation of China (14ZR1421800) and State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201404).

基于LTSA和联合指标的非高斯过程监控方法及应用

杨正永1, 王昕2, 王振雷1   

  1. 1. 化工过程先进控制和优化技术教育部重点实验室华东理工大学, 上海 200237;
    2. 上海交通大学电工与电子技术中心, 上海 200240
  • 通讯作者: 王振雷
  • 作者简介:杨正永(1990-),男,硕士研究生。
  • 基金资助:

    国家自然科学基金项目(61134007);国家高技术研究发展计划项目(2013AA040701);上海市科技攻关项目(12dz1125100);上海市“科技创新行动计划”研发平台建设项目(13DZ2295300);上海市自然科学基金项目(14ZR1421800);流程工业综合自动化国家重点实验室开放课题基金资助项目(PAL-N201404)。

Abstract:

Many industrial process variables have characteristics of high-dimension and not strictly obeying the Gaussian distribution. A method was proposed to solve these problems of the industrial process. The method was based on LTSA algorithm and combined index to improve monitoring performance. Firstly, the local tangent space alignment (LTSA) algorithm was used to get the sub-manifold of low dimension from the normal sample data to achieve dimensionality reduction. The two-step strategy was used to get the new statistical model. Then, the non-Gaussian statistical value and the Gaussian statistical value were constructed. Therefore, the new statistical value weighted by these two statistical values was intended to achieve monitoring of the process. Finally, the proposed method was applied to the Tennessee Eastman (TE) process and the ethylene cracking furnace to demonstrate its effectiveness.

Key words: algorithm, integration, process control, non-linearity, non-Gaussian, combined index, local tangent space alignment algorithm, Tennessee Eastman process

摘要:

很多实际工业过程数据都具有高维、非线性且不严格服从高斯分布等特点。为处理数据维数高且是高斯分布和非高斯分布的混合体等问题,实现高效的过程监控,提出了一种基于LTSA和联合指标的非高斯过程监控方法。首先采用局部切空间排列(LTSA)算法从正常样本数据中提取低维子流形以实现维数约减;然后基于非高斯-高斯两步策略建立统计模型并得到非高斯统计量和高斯统计量,再对其进行加权得到新的统计量以实现对过程的监控;最后将该方法应用于田纳西-伊斯曼标准测试平台和实际乙烯裂解炉的过程监控,说明了所提方法的有效性。

关键词: 算法, 集成, 系统工程, 非线性, 非高斯, 联合指标, 局部切空间排列算法, 田纳西-伊斯曼过程

CLC Number: