CIESC Journal ›› 2016, Vol. 67 ›› Issue (4): 1440-1447.DOI: 10.11949/j.issn.0438-1157.20150755
Previous Articles Next Articles
PAN Ling, GAO Chenghui
Received:
2015-06-01
Revised:
2015-09-10
Online:
2016-04-05
Published:
2016-04-05
Supported by:
supported by the National Natural Science Foundation of China (51175085), the Tribology Science Found of State Key Laboratory of Tribology (SKLTKF13A09) and the Natural Science Foundation of Fujian Province (2016J01226).
潘伶, 高诚辉
通讯作者:
高诚辉
基金资助:
国家自然科学基金项目(51175085);清华大学摩擦学国家重点实验室开放基金项目(SKLTKF13A09);福建省自然科学基金项目(2016J01226)。
CLC Number:
PAN Ling, GAO Chenghui. Molecular dynamics simulation of boundary slip in nanogap: effect of shear velocity[J]. CIESC Journal, 2016, 67(4): 1440-1447.
潘伶, 高诚辉. 分子动力学模拟剪切速度对纳米间隙中角鲨烷界面滑移的影响[J]. 化工学报, 2016, 67(4): 1440-1447.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20150755
[1] | OLDSTEIN S. Modern Developments in Fluid Dynamics[M]. Vol Ⅱ. Oxford: Clarendon Press, 1957: 676-680. |
[2] | BEAVERS G S, JOSEPH D D. Boundary conditions at a naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30 (1): 197-207. DOI: 10.1017/S0022112067001375 |
[3] | MA G J, WU C W, ZHOU P. Wall slip and hydrodynamics of two-dimensional journal bearing[J]. Tribology International, 2007, 40: 1056-1066. DOI: 10.1016/j.triboint.2006.10.003. |
[4] | THOMPSON P A, TROIAN S M. A general boundary condition for liquid flow at solid surfaces[J]. Nature, 1997, 389: 360-362. DOI: 10.1038/38686. |
[5] | RIEZJEV N V, TROIAN S M. Molecular origin and dynamic behavior of slip in sheared polymer films[J]. Physical Review Letters, 2004, 92 (1): 018302. DOI: 10.1103/PhysRevLett.92.018302. |
[6] | JING D, BHUSHAN B. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol[J]. Langmuir, 2013, 29 (47): 14691-14700. DOI: 10.1021/la4030876. |
[7] | ESPINOSA-MARZAL R M, ARCIFA A, ROSSI A, et al. Microslips to "avalanches" in confined, molecular layers of ionic liquids[J]. The Journal of Physical Chemistry Letters, 2013, 5 (1): 179-184. DOI: 10.1021/jz402451v. |
[8] | 陈其乐, 孔宪, 卢滇楠, 等. 外壁电荷性质对双壁碳纳米管中水分子运动行为的影响[J]. 化工学报, 2014, 65 (1): 319-327. DOI: 10.3969/j.issn.0438-1157.2014.01.042. CHEN Q L, KONG X, LU D N, et al. Molecular simulation of outer surface charge on water transport through double-wall carbon nanotube[J]. CIESC Journal, 2014, 65 (1): 319-327. DOI: 10.3969/j.issn.0438-1157.2014.01.042. |
[9] | 张程宾, 赵沐雯, 陈永平, 等. 流体密度对纳通道内流动滑移的影响[J]. 化工学报, 2012, 63 (S1): 12-16. DOI: 10.3969/j.issn.0438-1157.2012.zl.003. ZHANG C B, ZHAO M W, CHEN Y P, et al. Effects of fluid density on velocity slip in nanochannels[J]. CIESC Journal, 2012, 63 (S1): 12-16. DOI: 10.3969/j.issn.0438-1157.2012.zl.003. |
[10] | 潘伶, 高诚辉. 纳米间隙润滑剂季戊四醇四酯的压缩性能分子动力学模拟[J]. 机械工程学报, 2015, 51 (5): 76-82. DOI: 10.3901/JME.2015.05.076. PAN L, GAO C H. Molecular dynamics simulation on the compressibility of pentaerythritol tetra in nanogap[J]. Journal of Mechanical Engineering, 2015, 51 (5): 76-82. DOI: 10.3901/JME.2015.05.076. |
[11] | PAN L, GAO C H. Confined fluid density of a pentaerythritol tetraheptanoate lubricant investigated using molecular dynamics simulation[J]. Fluid Phase Equilibria, 2015, 385: 212-218. DOI: 10.1016/j.fluid.2014.11.014. |
[12] | TSIGE M, PATNAIK S S. An all-atom simulation study of the ordering of liquid squalane near a solid surface[J]. Chemical Physics Letters, 2008, 457 (4/5/6): 357-361. DOI: 10.1016/j.cplett.2008.04.026. |
[13] | KARNIADAKIS G, BESKOK A, ALURU N. Microflows and Nanoflows: Fundamentals and Simulation[M]. Berlin Heidelberg, New York: Springer, 2004: 1-23. |
[14] | PERTSIN A J, GRUNZE M. Long-ranged solvation forces in a fluid with short-ranged interactions[J]. Journal of Chemical Physics, 2003, 118 (17): 8004-8009. DOI: 10.1063/1.1564051. |
[15] | LOI S, SUN G, FRANZ V, et al. Rupture of molecular thin films observed in atomic force microscopy (II): Experiment[J]. Physical Review E, 2002, 66 (3): 031602. DOI: 10.1103/PhysRevE.66.031602. |
[16] | FRANZ V, BUTT H-J. Confined liquids: solvation forces in liquid alcohols between solid surfaces[J]. The Journal of Physical Chemistry B, 2002, 106 (7): 1703-1708. DOI: 10.1021/jp012541w. |
[17] | 陈天星. 利用原子力显微镜对近壁面受限液体性质的研究[D]. 北京: 清华大学, 2011. CHEN T X. Study on properties of the confined liquids at solid surface with AFM[D]. Beijing: Tsinghua University, 2011. |
[18] | SIVEBAEK I M, SAMOILOV V N, PERSSON B N J. Squeezing molecularly thin alkane lubrication films: layering transitions and wear[J]. Tribology Letters, 2004, 16 (3): 195-200. DOI: 10.1023/B:TRIL.0000009730.31175.82. |
[19] | 胡元中, 王慧, 郭炎. 超薄油膜润滑的分子动力学模拟[J]. 摩擦学学报, 1995, 15 (2): 138-144. DOI: 10.16078/j.tribology.1995.02.007. HU Y Z, WANG H, GUO Y. Molecular dynamics simulation of ultra thin film lubrication (I): Rigid molecule model[J]. Tribology, 1995, 15 (2): 138-144. DOI: 10.16078/j.tribology.1995.02.007. |
[20] | 王慧, 胡元中, 郭炎. 超薄润滑膜界面滑移现象的分子动力学研究[J]. 清华大学学报 (自然科学版), 2000, 40 (4): 107-110. WANG H, HU Y Z, GUO Y. Molecular dynamics study of interfacial slip behavior of ultrathin lubricating films[J]. J. Tsinghua Univ. (Sci. & Tech.), 2000, 40 (4): 107-110. |
[21] | NAGAYAMA G, CHENG P. Effects of interface wettability on microscale flow by molecular dynamic simulation[J]. International Journal of Heat and Mass Transfer, 2004, 47: 501-513. DOI: 10.1016/j.ijheatmasstransfer.2003.07.013. |
[22] | ASPROULIS N, DRIKAKIS D. Boundary slip dependency on surface stiffness[J]. Physical Review E, 2010, 81 (6): 061503. DOI: 10.1103/PhysRevE.81.061503. |
[23] | ZHANG H, ZHANG Z, YE H. Molecular dynamics-based prediction of boundary slip of fluids in nanochannels[J]. Microfluidics and Nanofluidics, 2012, 12 (1-4): 107-115. DOI: 10.1007/s10404-011-0853-y. |
[24] | NOORIAN H, TOGHRAIE D, AZIMIAN A R. Molecular dynamics simulation of poiseuille flow in a rough nano channel with checker surface roughnesses geometry[J]. Heat and Mass Transfer, 2014, 50 (1): 105-113. DOI: 10.1007/s00231-013-1232-x. |
[25] | PLIMPTON S. LAMMPS molecular dynamics simulator[EB/OL].[2015-5-15]. http://lammps.sandia.gov. |
[26] | PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117 (1): 1-19. DOI: 10.1006/jcph.1995.1039. |
[27] | SUN H. Ab initio calculations and force field development for computer simulation of polysilanes[J]. Macromolecules, 1995, 28 (3): 701-712. DOI: 10.1021/ma00107a006. |
[28] | SUN H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998, 102 (38): 7338-7364. DOI: 10.1021/jp980939v. |
[29] | NAVIER C L M H. Memoire sur les du movement des fluids[J]. Mem l'Acad Roy Sci l'Inst France, 1823, 6: 389-440. |
[30] | VADAKKEPATT A, DONG Y, LICHTER S, et al. Effect of molecular structure on liquid slip[J]. Physical Review E, 2011, 84 (6): 066311. DOI: 10.1103/PhysRevE.84.066311. |
[31] | MENDONCA A C F, FOMIN Y D, MALFREYT P, et al. Novel ionic lubricants for amorphous carbon surfaces: molecular modeling of the structure and friction[J]. Soft Matter, 2013, 9 (44): 10606-10616. DOI: 10.1039/C3SM51689J. |
[32] | LIM R, O'SHEA S J. Solvation forces in branched molecular liquids[J]. Physical Review Letters, 2002, 88 (24): 246101. DOI: 10.1103/PhysRevLett.88.246101. |
[33] | LIM R, LI S F Y, O'SHEA S J. Solvation forces using sample-modulation atomic force microscopy[J]. Langmuir, 2002, 18 (16): 6116-6124. DOI: 10.1021/la011789+. |
[34] | ZHENG X, ZHU H, KOSASIH B, et al. A molecular dynamics simulation of boundary lubrication: the effect of n-alkanes chain length and normal load[J]. Wear, 2013, 301 (1/2): 62-69. DOI: 10.1016/j.wear.2013.01.052. |
[1] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[2] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[3] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[6] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[7] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[10] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[11] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[14] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[15] | Dong XU, Du TIAN, Long CHEN, Yu ZHANG, Qingliang YOU, Chenglong HU, Shaoyun CHEN, Jian CHEN. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres [J]. CIESC Journal, 2023, 74(3): 1379-1389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||