CIESC Journal ›› 2015, Vol. 66 ›› Issue (8): 2854-2862.DOI: 10.11949/j.issn.0438-1157.20150810
Previous Articles Next Articles
ZENG Liang, GONG Jinlong
Received:
2015-06-03
Revised:
2015-06-10
Online:
2015-08-05
Published:
2015-08-05
Supported by:
supported by the National Natural Science Foundation of China (21406162, 21376169).
曾亮, 巩金龙
通讯作者:
巩金龙
基金资助:
国家自然科学基金项目(21406162, 21376169)。
CLC Number:
ZENG Liang, GONG Jinlong. Advances in chemical looping reforming for direct hydrogen production[J]. CIESC Journal, 2015, 66(8): 2854-2862.
曾亮, 巩金龙. 化学链重整直接制氢技术进展[J]. 化工学报, 2015, 66(8): 2854-2862.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20150810
[1] | Sherif S A, Goswami D Y, Stefanakos E K, Steinfeld A. Handbook of Hydrogen Energy [M]. Boca Raton, USA: CRC Press, 2014. |
[2] | Li F, Fan L S. Clean coal conversion processes — progress and challenges [J]. Energy & Environmental Science, 2008, 1(2): 248-267. |
[3] | Chen Bo(陈博), Liao Zuwei(廖祖维), Wang Jingdai(王靖岱), Yu Huanjun(俞欢军), Yang Yongrong(阳永荣). Exergy analysis of hydrogen production by steam reforming of hydrocarbons and its carbon emission evaluation [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报:石油加工), 2012, 28 (4): 662-669. |
[4] | Gong J, Luque R. Catalysis for production of renewable energy [J]. Chemical Society Reviews, 2014, 43 (22): 7466-7468. |
[5] | Fan L S, Zeng L, Wang W, Luo S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion — prospect and opportunity [J]. Energy & Environmental Science, 2012, 5 (6): 7254-7280. |
[6] | Thursfield A, Murugan A, Franca R, Metcalfe I S. Chemical looping and oxygen permeable ceramic membranes for hydrogen production — a review [J]. Energy & Environmental Science, 2012, 5 (6): 7421-7459. |
[7] | Xu Dikai(许迪恺), Tong Andrew, Zeng Liang(曾亮), Luo Siwei(罗四维), Fan Liangshi(范良士). Development on iron-based moving bed chemical looping process [J]. CIESC Journal(化工学报), 2014, 65 (7): 2410-2416. |
[8] | Messerschmitt A. Process for producing hydrogen[P]: US, 971206. 1910. |
[9] | Lane H. Process for the production of hydrogen[P]: US, 1078686. 1913. |
[10] | Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego L F. Progress in chemical-looping combustion and reforming technologies [J]. Progress in Energy and Combustion Science, 2012, 38 (2): 215-282. |
[11] | Fan L S, Zeng L, Luo S. Chemical-looping technology platform [J]. AIChE Journal, 2015, 61 (1): 2-22. |
[12] | Wang Zhangmao(王樟茂), Chen Wei(陈伟), Chen Gantang(陈甘棠), Zhang Bin(张斌), Yan Huiqing(严慧卿). Characteristics of fine power fluidization [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1988, 4(1): 89-92 |
[13] | Yang Yongrong(阳永荣), Rong Shunxi(戎顺熙), Chen Gantang(陈甘棠), Chen Bochuan(陈伯川). Flow pattern and transition in turbulent fluidized bed [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1990, 6(2): 9-16 |
[14] | Niu Xueyi(牛学义), Wang Zhangmao(王樟茂), Rong Shunxi(戎顺熙), Chen Gantang(陈甘棠). Gas-solid hydrodymanics with varying gas velocities [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1993, 9(4): 465-470. |
[15] | Li Xi(李希), Chen Jianfeng(陈建峰), Chen Gantang(陈甘棠). Research progress in microscale mixing [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1994, 10 (2): 103-112. |
[16] | Ryden M, Lyngfelt A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion [J]. International Journal of Hydrogen Energy, 2006, 31 (10): 1271-1283. |
[17] | Wang Hua(王华), Zhu Xing(祝星). Chemical Looping Steam Reofrming for Producing Hydrogen and Syngas(化学链蒸汽重整制氢与合成气技术)[M]. Beijing: Science Press,2012. |
[18] | Otsuka K, Wang Y, Sunada E, Yamanaka I. Direct partial oxidation of methane to synthesis gas by cerium oxide [J]. Journal of Catalysis, 1998, 175 (2): 152-160. |
[19] | Gupta A, Hegde M S, Priolkar K R, Waghmare U V, Sarode P R, Emura S. Structural investigation of activated lattice oxygen in Ce1-xSnxO2 and Ce1-x-ySnxPdyO2-d by EXAFS and DFT calculation [J]. Chemistry of Materials, 2009, 21 (24): 5836-5847. |
[20] | Zhu X, Wang H, Wei Y. Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier [J]. Journal of Natural Gas Chemistry, 2011, 20 (3): 281-286. |
[21] | Zhu X, Wang H, Wei Y. Reaction characteristics of chemical-looping steam methane reforming over a Ce-ZrO2 solid solution oxygen carrier [J]. Mendeleev Communications, 2011, 21 (4): 221-223. |
[22] | Li R, Yu C, Dai X, Shen S. Partial oxidation of methane to synthesis gas using lattice oxygen instead of molecular oxygen [J]. Chinese J. Catal., 2002, 10: 56-69. |
[23] | Jeong H, Kwak J, Han G, Yoon K. Stepwise production of syngas and hydrogen through methane reforming and water splitting by using a cerium oxide redox system [J]. Int. J. Hydrogen Energy, 2011, 36(23): 15221-15230. |
[24] | Li K, Wang H, Wei Y. Selective oxidation of carbon using iron-modified cerium oxide [J]. Journal of Physical Chemistry C, 2009, 113: 15288-15297. |
[25] | Kodama T, Ohtake H, Matsumoto S, Aoki A, Shimizu T, Kitayama Y. Thermochemical methane reforming using a reactive WO3/W redox system [J]. Energy, 2000, 25: 411-425. |
[26] | Kodama T, Shimizu T, Satoh T, Shimizu K. Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst [J]. Energy, 2003, 28: 1055-1068. |
[27] | Sim A, Cant N W, Trimm D L. Ceria-zirconia stabilised tungsten oxides for the production of hydrogen by the methane-water redox cycle [J]. Int. J. Hydrogen Energy, 2010, 35: 8953-8961. |
[28] | Svoboda K, Slowinski G, Rogut J, Baxter D. Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures [J]. Energy Convers. Manage, 2007, 48 (12): 3063. |
[29] | Steinfeld A, Kuhn P. High-temperature solar thermochemistry: production of iron and synthesis gas by Fe3O4-reduction with methane [J]. Energy, 1993, 18: 239-249. |
[30] | Halmann M, Frei A, Steinfeld A. Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons [J]. Energy, 2002, 27: 1069-1084. |
[31] | Luo S, Zeng L, Xu D, Kathe M, Chung E, Deshpande N, Qin L, Majumder A, Hsieh T L, Tong A, Sun Z, Fan L S. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2: CO ratio of 2: 1 [J]. Energy & Environmental Science, 2014, 7 (12): 4104-4117. |
[32] | Xiang W, Chen Y. Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors [J]. Energy & Fuels, 2007, 21 (4): 2272. |
[33] | Chiesa P, Lozza G, Malandrino A, Romano M, Piccolo V. Three-reactors chemical looping process for hydrogen production [J]. International Journal of Hydrogen Energy, 2008, 33 (9): 2233-2245. |
[34] | Li F, Zeng L, Fan L S. Techno-economic analysis of coal-based hydrogen and electricity cogeneration processes with CO2 capture [J]. Industrial & Engineering Chemistry Research, 2010, 49 (21): 11018-11028. |
[35] | Li F, Zeng L, Fan L S. Biomass direct chemical looping process: process simulation [J]. Fuel, 2010, 89(12): 3773-3784. |
[36] | Dai X, Li R, Yu C, Hao Z. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A= La, Nd, Eu) perovskite-type oxides as oxygen storage [J]. J. Phys. Chem. B, 2006, 110: 22525-22531. |
[37] | Mihai O, Chen D, Holmen A. Catalytic consequence of oxygen of lanthanum ferrite Perovskite in chemical looping reforming of methane [J]. Ind. Eng. Chem. Res., 2011, 50: 2613-2621. |
[38] | Nalbandian L, Evdou A, Zaspalis V. La1-xSrxMyFe1-yO3-z perovskites as oxygen-carrier materials for chemical-looping reforming [J]. Int. J. Hydrogen Energy, 2011, 36: 6657-6670. |
[39] | He F, Li F. Perovskite promoted iron oxide for hybrid watersplitting and syngas generation with exceptional conversion [J]. Energy & Environmental Science, 2015, 8: 535-539. |
[40] | Ryu H J, Jin G T, Bae D H, Yi C K. Continuous operation of a 50 kWth chemical-looping combustor: long-term operation with Ni-and Co-based oxygen carrier particles[OL]. http: //lib.kier.re. kr/balpyo/ clean5/13.pdf. |
[41] | Lyngfelt A, Thunman H. Construction and 100h of operational experience of a 10-kW chemical looping combustor [J]. Carbon Dioxide Capture for Storage in Deep Geologic Formations, 2005: 625-645. |
[42] | de Diego L F, Garcia-Labiano F, Gayan P, Celaya J, Palacios J M, Adanez J. Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier [J]. Fuel, 2007, 86 (7-8): 1036-1045. |
[43] | Shen L, Wu J, Xiao J, Song Q, Xiao R. Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier [J]. Energy & Fuels, 2009, 23: 2498-2505. |
[44] | IGT. Development of the Steam-Iron Process for Hydrogen Production[M]. Washington: Dept of Energy, 1977. |
[45] | Li F, Zeng L, Velazquez-Vargas L G, Yoscovits Z, Fan L S. Syngas chemical looping gasification process: Bench-scale studies and reactor simulations [J]. AIChE Journal, 2009, 56(8): 2186-2199. |
[46] | Thon A, Kramp M, Hartge E-U. Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier [J]. Applied Energy, 2014, 2: 309-317. |
[47] | Wang D, Fan L S. Bulk coarse particle arching phenomena in a moving bed with fine particle presence [J]. AIChE Journal, 2014, 60 (3): 881-892. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[3] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[6] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[7] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[8] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
[9] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[10] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[11] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[12] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
[13] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[14] | Xingang QI, Libo LU, Yunan CHEN, Zhiwei GE, Liejin GUO. Review of black liquor supercritical water gasification for hydrogen production with high value-added chemicals recovery [J]. CIESC Journal, 2022, 73(8): 3338-3354. |
[15] | Zhenhe XU, Hongjiang LI, Yu GAO, Zheng LI, Hanyan ZHANG, Baotong XU, Fu DING, Yaguang SUN. Preparation of In2O3/Ag:ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis [J]. CIESC Journal, 2022, 73(8): 3625-3635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||