[1] |
BERGLES A E. ExHFT for fourth generation heat transfer technology [J]. Experimental Thermal and Fluid Science, 2002, 26: 335-344.
|
[2] |
TU W B, TANG Y, ZHOU B, et al. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube with small pipe inserts [J]. International Communications in Heat and Mass Transfer, 2014, 56: 1-7.
|
[3] |
JI W T, ZHAO C Y, ZHANG D C, et al. Influence of condensate inundation on heat transfer of R134a condensing on three dimensional enhanced tubes and integral-fin tubes with high fin density [J]. Applied Thermal Engineering, 2012, 38: 151-159.
|
[4] |
谭羽非, 陈家新. 新型不锈钢波纹管性能及强化传热的实验研究[J]. 热能动力工程, 2003, 18(1): 47-49. TAN Y F, CHEN J X. Experimental study on the performance of a new type of stainless steel corrugated tube [J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(1): 47-49.
|
[5] |
过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004. GUO Z Y, HUANG S Y. Principle of Cooperative Field and New Technology of Heat Transfer Enhancement [M]. Beijing: China Electric Power Press, 2004.
|
[6] |
孟继安, 陈泽敬, 李志信, 等. 交叉缩放椭圆管换热与流阻实验研究及分析[J]. 工程热物理学报, 2004, 25(5): 813-815. MENG J A, CHEN Z J, LI Z X, et al. Experimental study and analysis on heat transfer and flow resistance of elliptical tube with cross scaling [J]. Journal of Engineering Thermalphysics, 2004, 25(5): 813-815.
|
[7] |
WANG P, LIU D Y, XU C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams [J]. Applied Energy, 2013, 102: 449-460.
|
[8] |
CHEN H X, XU J L, LI Z J, et al. Flow pattern modulation in a horizontal tube by the passive phase separation concept [J]. International Journal of Multiphase Flow, 2012, 45: 12-23.
|
[9] |
陈宏霞, 徐进良, 李子衿, 等. 相分离概念调控水平管分层流流型[J]. 化工学报, 2012, 63(7): 2045-2050. CHEN H X, XU J L, LI Z J, et al. Stratified flow pattern modulation by phase separation concept [J]. CIESC Journal, 2012, 63(7): 2045-2050.
|
[10] |
ADKINS D R., DYKHUIZEN R C. Procedures for measuring the properties of heat pipe wick materials [C]// Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, 2010: 911-917.
|
[11] |
FREGGENS R A. Experimental determination of wick properties for heat pipe applications [C]// 4th Intersociety Energy Conference Engineering Conference. Washington, DC, 1969: 888-897.
|
[12] |
WEIBEL J A, GARIMELLA S V, NORTH M T. Characterization of evaporation and boiling from sintered powder wicks fed by capillary action [J]. International Journal Heat and Mass Transfer, 2010, 53(19/20): 4204-4215.
|
[13] |
HOLLEY B, FAGHRI A. Permeability and effective pore radius measurements for heat pipe and fuel cell applications [J]. Applied Thermal Engineering, 2006, 26(4): 448-462.
|
[14] |
HWANG G S, NAM Y, FLEMING E, et al. Multi-artery heat pipe spreader: experiment [J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2662-2669.
|
[15] |
BYON C, KIM S J. Capillary performance of bi-porous sintered metal wicks [J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4096-4103.
|
[16] |
邓大祥. 微尺度热质输运强化槽道多孔结构制造及性能研究[D]. 广州: 华南理工大学, 2013. DENG D X. Fabrication and properties of micro scale heat and mass transport through porous structure [D]. Guangzhou: South China University of Technology, 2013.
|
[17] |
DENG D X, TANG Y, ZENG J, et al. Characterization of capillary rise dynamics in parallel micro V-grooves [J]. International Journal of Heat and Mass Transfer, 2014, 77: 311-320.
|
[18] |
DENG D X, TANG Y, HUANG G H, et al. Characterization of capillary performance of composite wicks for two-phase heat transfer devices [J]. International Journal of Heat and Mass Transfer, 2013, 56: 283-293.
|
[19] |
TANG Y, DENG D X, HUANG G H, et al. Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices [J]. Energy Conversion and Management, 2013, 66: 66-76.
|
[20] |
TANG Y, DENG D X, LU L S, et al. Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera [J]. Experimental Thermal and Fluid Science, 2010, 34: 190-196.
|