CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 22-27.doi: 10.11949/j.issn.0438-1157.20151737

Previous Articles     Next Articles

A new method for calculating time to maximum rate under adiabatic condition

GUO Zichao, HAO Lin, WEI Hongyuan   

  1. Tianjin University-AstraZeneca Process Safety Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2015-11-19 Revised:2015-12-01 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (21576196).

Abstract:

Time to maximum rate under adiabatic condition (TMRad) is a widely-used parameter for evaluation of the probability of decomposition reactions of substances or reactive mixtures under adiabatic conditions. The traditional method for calculation of TMRad necessitates the kinetics and thermodynamics of the decomposition reactions, such as pre-exponential factor, activation energy, reaction order and decomposition enthalpy. To calculate the TMRad using accelerating rate calorimeter (ARC), a whole thermal curve including both onset decomposition temperature and final temperature is required. However, due to the complexity of reaction mechanism or safe operation of calorimetric experiment, the final temperature is often unavailable, meaning the traditional method is in failure. Therefore, to solve this problem, this paper proposes a new method for calculating TMRad, which is based on the assumption that the consumption of reactants is negligible within a narrow temperature range relative to the whole exothermic curve. Moreover, the experiment results also prove the flexibility of this new method to exothermic curve including final temperature.

Key words: secondary decomposition reactions, thermodynamics, safety, stability, time to maximum rate under adiabatic condition, accelerating rate calorimeter

CLC Number: 

  • O642.1
[1] ETCHELLS J C. Why reactions run away[J]. Organic Process Research & Development, 1997, 1(6):435-437. DOI:10.1021/op970031n.
[2] BARBAS R, BOTIJA M, CAMPS H, et al. Safety evaluation of an unexpected incident with a nitro compound[J]. Organic Process Research & Development, 2007, 11(6):1131-1134. DOI:10.1021/op700128r.
[3] SHIMIZE S, OSATO H, IMAMURA Y, et al. Safety evaluation of sodium borohydride in dimethylacetamide[J]. Organic Process Research & Development, 2010, 14(6):1518-1520. DOI:10.1021/op1002566.
[4] NOLAN P F, BARTON J A. Some lessons from thermal runaway incidents[J]. Journal of Hazardous Materials, 1987, 14(2):233-239. DOI:10.1016/0304-3894(87)87015-2.
[5] STOESSEL F. Thermal Safety of Chemical Process:Risk Assessment and Process Design[M]. Weinheim:Wiley-VCH, 2008:55-56.
[6] 郭璐, 谢传欣, 黄飞, 等. 过氧化二异丙苯热稳定性和热安全性研究[J]. 安全与环境学报, 2013, 13(1):211-214. DOI:10.3969/j.issn.1009-6094.2013.01.046.GUO L, XIE C X, HUANG F, et al. On the thermal safety and stability of dicumyl peroxide[J]. Journal of Safety and Environment, 2013, 13(1):211-214. DOI:10.3969/j.issn.1009-6094.
[7] SEMENOFF N. Zur theorie des verbrennung sprozesses[J]. Zeitschrift für Physic, 1928, 48(7):571-582. DOI:10.1007/BF01340021.
[8] TOWNSEND D I, TOU J C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimca Acta, 1980, 37(1):1-30. DOI:10.1016/0040-6031(80)85001-5.
[9] TOU J C, WHITING L F. The thermokinetic performance of an accelerating rate calorimeter[J]. Thermochimca Acta, 1981, 48(1/2):21-42. DOI:10.1016/0040-6031(81)87019-0.
[10] 杨茜, 陈利平, 陈网桦, 等. 4种硝酸酯热安定性的绝热实验研究[J]. 安全与环境学报, 2012, 12(1):186-190. DOI:10.3969/j.issn.1009-6094.2012.01.042.YANG Q, CHEN L P, CHEN W H, et al. Research on the thermal stability of four nitrates by accelerating the rate calorimeter[J]. Journal of Safety and Environment, 2012, 12(1):186-190. DOI:10.3969/j.issn.1009-6094.2012.01.042.
[11] 程春生, 魏振云, 李全国, 等. C,N-二甲基-C-(3-吡啶基)硝酮合成热风险研究[J]. 中国安全科学学报, 2013, 23(10):33-37.CHENG C S, WEI Z Y, LI Q G, et al. Study on thermal hazard of synthesis of C,N-dimethyl-C-(3-pyridyl) nitrone[J]. China Safety Science Journal, 2013, 23(10):33-37.
[12] 张志刚, 钱新明. 二甲亚砜热稳定性的实验研究[J]. 中国安全科学学报, 2006, 16(9):100-104.ZHANG Z G, QIAN X M. Experimental study on thermal stability of DMS[J]. China Safety Science Journal, 2006, 16(9):100-104.
[13] 魏彤彤. 水对过氧化苯甲酰热爆炸的抑制作用[J]. 消防理论研究, 2013, 32(3):244-246.WEI T T. Inhibition of water on thermal explosion of benzoyl peroxide[J]. Fire Science and Technology, 2013, 32(3):244-246.
[14] YANG X W, ZHANG X Y, GUO Z C, et al. Effects of incompatible substances on the thermal stability of dimethyl sulfoxide[J]. Thermochimica Acta, 2013, 559(10):76-81. DOI:10.1016/j.tca.2013.02.027.
[15] 阮继峰, 平平, 孙金华, 等. 硝酸及硫酸对硝基苯稳定性的影响[J]. 兵器材料科学与工程, 2011, 34(4):37-40. DOI:33-1331/tj.20110702.1825.003.RUAN J F, PING P, SUN J H, et al. Influence of nitric acid and sulfuric acid on the thermal stability of nitrobenzene[J]. Ordnance Material Science and Engineering, 2011, 34(4):37-40. DOI:33-1331/tj.20110702.1825.003.
[16] 孙金华, 陆守香, 孙占辉. 自反应性化学物质的热危险性评价方法[J]. 中国安全科学学报, 2003, 13(4):44-48.SUN J H, LU S X, SUN Z H. Study on thermal risk evaluation of reactive substance[J]. China Safety Science Journal, 2003, 13(4):44-48.
[1] Wenchao XU, Zhigao SUN, Cuimin LI, Juan LI, Haifeng HUANG. Effect of surfactant E-1310 on the formation of HCFC-141b hydrate under static conditions [J]. CIESC Journal, 2023, 74(5): 2179-2185.
[2] Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456.
[3] Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473.
[4] Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650.
[5] Xiangshang CHEN, Zhenjie MA, Xihua REN, Yue JIA, Xiaolong LYU, Huayan CHEN. Preparation and mass transfer efficiency of three-dimensional network extraction membrane [J]. CIESC Journal, 2023, 74(3): 1126-1133.
[6] Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041.
[7] Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369.
[8] Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689.
[9] Ke YANG, Chensheng WANG, Hong JI, Kai ZHENG, Zhixiang XING, Haipu BI, Juncheng JIANG. Experimental study on inhibition of methane explosion by polydopamine coated mixed powder [J]. CIESC Journal, 2022, 73(9): 4245-4254.
[10] Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234.
[11] Yan WANG, Jia HE, Jingjing YANG, Chendi LIN, Wentao JI. Inhibition of polyethylene dust explosion by oxalate and bicarbonate [J]. CIESC Journal, 2022, 73(9): 4207-4216.
[12] Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112.
[13] Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482.
[14] Hongxin YANG, Xingya LI, Liang GE, Tongwen XU. Preparation of mono-/divalent anion permselective membranes with piperidinium-type long side-chain [J]. CIESC Journal, 2022, 73(8): 3739-3748.
[15] Jianfei SONG, Liqiang SUN, Ming XIE, Yaodong WEI. Experimental study of instability of gas-phase swirling flow in cyclone [J]. CIESC Journal, 2022, 73(7): 2858-2864.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!