[1] |
韩红桂, 甄博然, 乔俊飞. 动态结构优化神经网络及其在溶解氧控制中的应用[J]. 信息与控制, 2010, 39(3): 354-360. DOI: 10.3969/j.issn.1002-0411.2010.03.016. HAN H G, ZHEN B R, QIAO J F. Dynamic structure optimization neural network and its applications to dissolved oxygenic(DO) control[J]. Information and Control, 2010, 39(3): 354-360. DOI: 10.3969/j.issn.1002-0411.2010.03.016.
|
[2] |
PETRE E, SELISTEANU D, SENDRESCU D, et al. Nonlinear and neural networks based adaptive control for a wastewater treatment bioprocess[M]//Knowledge Based Intelligent Information and Engineering Systems. Berlin: Springer Berlin: Heidelberg, 2008: 273-280.
|
[3] |
GARRIDO J M, VAN BENTHUM W A J, VAN LOOSDRECHT, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Biotechnology and Bioengineering, 1997, 53 (2): 168-178. DOI: 10.1002/(SICI)1097-0290(19970120) 53:23.0.CO;2-M.
|
[4] |
HOLENDA B, DOMOKOS E, REDEY A, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control[J]. Computers & Chemical Engineering, 2008, 32 (6): 1270-1278. DOI: 10.1016/j.compchemeng.2007.06.008.
|
[5] |
WAHAB N A, KATEBI R, BALFERUD J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical Engineering Journal, 2009, 45 (3): 239-248. DOI: 10.1016/j.bej.2009.04.016.
|
[6] |
VRECKO D, HVALA N, KOCIJAN J. Wastewater treatment benchmark: what can be achieved with simple control[J]. Water Science & Technology, 2002, 45 (4/5): 127-134.
|
[7] |
LIU H B, YOO C K. Performance assessment of cascade controllers for nitrate control in a wastewater treatment process[J]. Korean Journal of Chemical Engineering, 2011, 28 (3): 667-673. DOI: 10.1007/s11814-010-0442-x.
|
[8] |
AYESA E, DE LA SOTA A, GRAU P, et al. Supervisory control strategies for the new WWTP of Galindo-Bilbao: the long run from the conceptual design to the full-scale experimental validation[J]. Water Science & Technology, 2006, 53 (4/5): 193-201. DOI: 10.2166/wst.2006.124.
|
[9] |
CARLSSON B, REHNSTROM A. Control of an activated sludge process with nitrogen removal—a benchmark study[J]. Water Science & Technology, 2002, 45 (4/5): 135-142.
|
[10] |
潘海鹏, 徐玉颖. 基于BP网络的流浆箱双变量PID解耦控制[J]. 化工学报, 2010, 61 (8): 2154-2158. PAN H P, XU Y Y. Double variable PID decoupling control of headbox based on BP neural network[J]. CIESC Journal, 2010, 61 (8):2154-2158.
|
[11] |
KOTZAPETROS A D, PARASKEVAS P A, STASINAKIA A S. Design of a modern automatic control system for the activated sludge process in wastewater treatment[J]. Chinese Journal of Chemical Engineering, 2015, 23 (8): 1340-1349. DOI: 10.1016/j.cjche.2014. 09.053.
|
[12] |
胡玉玲, 乔後飞. 变参数活性污泥系统溶解氧的模糊神经网络控制[J]. 电工技术学报, 2004, 19 (3): 36-40. HU Y L, QIAO J F. Fuzzy neural network control of DO in activated sludge system based on uncertain parameters[J]. Transactions of China Electrotechnical Society, 2004, 19 (3): 36-40.
|
[13] |
CHANDRAMOULI V, BRION G, NEELAKANTAN T R, et al. Backfilling missing microbial concentrations in a riverine database using artificial neural networks[J]. Water Research, 2007, 41 (1): 217-227. DOI: 10.1016/j.watres.2006.08.022.
|
[14] |
BELCHIOR C A C, ARAUJO R A M, LANDECK J A C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control[J]. Computers & Chemical Engineering, 2012, 37 (4): 152-162. DOI: 10.1016/j.compchemeng. 2011.09.011.
|
[15] |
HAN H G, QIAO J F, CHEN Q L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network[J]. Control Engineering Practice, 2012, 20 (4): 465-476. DOI: 10.1016/j.conengprac.2012.01.001.
|
[16] |
张亚军, 柴天佑, 富月. 基于ANFIS与多模型的一类非线性系统的自适应控制方法[J]. 化工学报, 2010, 61 (8): 2084-2091. ZHANG Y J, CHAI T Y, FU Y. Adaptive control method for a class of nonlinear systems based on ANFIS and multiple models[J]. CIESC Journal, 2010, 61 (8): 2084-2091.
|
[17] |
ALEX J, BETEAU J F, COPP J B, et al. Benchmark for evaluating control strategies in wastewater treatment plants[C]//European Control Conference. Germany Karlsruhe, 1999: 99.
|
[18] |
JEPPSSON U, ROSEN C, ALEX J, et al. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs[J]. Water Science and Technology, 2006, 53 (1): 287-295. DOI: 10.2166/wst.2006.031.
|
[19] |
MURALISANKAR S, GOPALAKRISHNAN N, ALASUBRAMANIAM P. An LMI approach for global robust dissipativity analysis of T-S fuzzy neural network with interval time-varying delays[J]. Expert Systems with Applications, 2012, 39 (3): 3345-3355. DOI: 10.1016/j.eswa.2011.09.021.
|
[20] |
王书斌, 单胜男, 罗雄麟. 基于T-S模糊模型与粒子群优化的非线性预测控制[J]. 化工学报, 2012, 63 (S1): 176-187. DOI: 10.3969/j.issn.0435-1157.2012.z1031. WANG S B, SHAN S N, LUO X L. Nonlinear predictive control based on T-S fuzzy model and particle-swarm optimization[J]. CIESC Journal, 2012, 63 (S1):176-187. DOI: 10.3969/j.issn.0435-1157.2012.z1031.
|
[21] |
CHEN C S. Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2011, 19 (4): 694-706. DOI: 10.1109/TFUZZ.2011.2136349.
|
[22] |
QIAO J F, LI W, HAN H G. Soft computing of biochemical oxygen demand using an improved T-S fuzzy neural network[J]. Chinese Journal of Chemical Engineering, 2014, 22 (11/12): 1254-1259. DOI: 10.1016/j.cjche.2014.09.023.
|