[1] |
PARK J H, LEE K H, KIM T Y, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(19): 7797-7802.
|
[2] |
BLOMBACH B, SCHREINER M E, HOLATKO J, et al. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum[J]. Appl. Environ. Microbiol., 2007, 73(7): 2079-2084.
|
[3] |
LIANG C W, HUO Y L, QI G F, et al. Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways[J]. Biotechnology Letters, 2015, 37(1): 1243-1248.
|
[4] |
LIU H M, ZHANG W G. Preliminary study on metabolic regulation and control of L-valine fermentation in a newly screened L-valine producing Brevibacterium flavum strain[J]. Afr. J. Biotechnol., 2010, 9(22): 3308-3317.
|
[5] |
WOO H M, PARK J B. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum[J]. Journal of Biotechnology, 2014, 180: 43-51.
|
[6] |
PARK J H, LEE S Y. Fermentative production of branched chain amino acids: a focus on metabolic engineering[J]. Appl. Microbiol. Biotechnol., 2010, 85(3): 491-506.
|
[7] |
MAHR R, GÄTGENS C, GÄTGENS J, et al. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum[J]. Metabolic Engineering, 2015, 32: 184-194.
|
[8] |
王小元. 谷氨酸棒杆菌生产缬氨酸的代谢工程研究进展[J]. 食品与生物技术学报, 2012, 31(3): 225-231. WANG X Y. Metabolic engineering in Corynebacterium glutamicum to increase L-valine production[J]. Journal of Food Science and Biotechnology, 2012, 31(3): 225-231.
|
[9] |
EPELBAUM S, LAROSSA R A, VANDYK T K, et al. Branched-chain amino acid biosynthesis in Salmonella typhimurium: a quantitative analysis[J]. J. Bacteriol., 1998, 180(16): 4056-4067.
|
[10] |
SINGH B K, SHANER D L. Biosynthesis of branched chain amino acids: from test tube to field[J]. Plant Cell, 1995, 7(7): 935-944.
|
[11] |
PARK J H, JANG Y S, LEE J W, et al. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering[J]. Biotechnol. Bioeng., 2011, 108(5): 1140-1147.
|
[12] |
BLOMBACH B, SCHREINER M E, BARTEK T, et al. Corynebacterium glutamicum tailored for high-yield L-valine production[J]. Applied Microbiology and Biotechnology, 2008, 79(3): 471-479.
|
[13] |
PARK J H, LEE S Y. Fermentative production of branched chain amino acids: a focus on metabolic engineering[J]. Appl. Microbiol. Biotechnol., 2010, 85(3): 491-506.
|
[14] |
HOU X H, GE X Y, WU D, et al. Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes[J]. J. Ind. Microbiol. Biotechnol., 2012, 39: 63-72.
|
[15] |
ELIŠÁKOVÁ V, PÁTEK M, HOLÁTKO J, et al. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum[J]. Appl. Environ. Microb., 2005, 71(1): 207-213.
|
[16] |
HASEGAWA S, UEMATSU K, NATSUMA Y, et al. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions[J]. Appl. Environ. Microbiol., 2012, 78(3): 865-875.
|
[17] |
SAMBROOK J, RUSSELL D W. 分子克隆实验指南[M]. 北京: 科学出版社, 2002: 96-98. SAMBROOK J, RUSSELL D W. Molecular Cloning Lab Manual[M]. Beijing: Science Press, 2002: 96-98.
|
[18] |
莫少文, 姚城镇, 张云开, 等. 纸层析法测定缬氨酸含量的改良[J]. 食品工业科技, 2012, 33(6): 111-112. MO S W, YAO C Z, ZHANG Y K, et al. Determination of L-valine by improved quantitative paper chromatography[J]. Science and Technology of Food Industry, 2012, 33(6): 111-112.
|
[19] |
CHEN Q, WANG Q, WEI G, et al. Production in Escherichia coli of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources[J]. Appl. Environ. Microb., 2011, 77(14): 4886-4893.
|
[20] |
李新涛, 徐庆阳, 冯宁, 等. 从发酵液中高效提取 L-缬氨酸的工艺研究[J]. 生物技术通讯, 2011, 22(2): 229-233. LI X T, XU Q Y, FENG N, et al.Study on L-valine efficient extraction technology from the fermentation broth[J]. Letters in Biotechnology, 2011, 22(2): 229-233.
|