[1] |
HAHN-HÄGERDAL B, GALBE M, GORWA-GRAUSLUND M F, et al. Bioethanol-the fuel of tomorrow from the residues of today[J]. Trends. Biotechnol, 2006, 24(12):549-556.
|
[2] |
NIGAM P S, SINGH A. Production of liquid biofuels from renewable resources[J]. Progress in Energy & Combustion Science, 2011, 37(1):52-68.
|
[3] |
JIN C, YAO M F, LIU H F, et al. Progress in the production and application of n-butanol as a biofuel[J]. Renewable & Sustainable Energy Reviews, 2011, 15(8):4080-4106.
|
[4] |
AGUSTINI L, EFIYANTI L, FAULINA S A, et al. Isolation and characterization of cellulase-and xylanase-producing microbes isolated from tropical forests in Java and Sumatra[J]. International Journal of Environment and Bioenergy, 2012, 3(3):154-167.
|
[5] |
WYMAN C E, DALE B E, ELANDER R T, et al. Coordinated development of leading biomass pretreatment technologies[J]. Bioresource Technol., 2005, 96(18):1959-1966.
|
[6] |
BARAL N R, SHAH A. Microbial inhibitors:formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass[J]. Appl. Microbiol. Biot., 2014, 98(22):9151-9172.
|
[7] |
TAHA M, FODA M, SHAHSAVARI E, et al. Commercial feasibility of lignocellulose biodegradation:possibilities and challenges[J]. Curr. Opin. Biotech., 2016, 38:190.
|
[8] |
SINGH A, PANT D, KORRES N E, et al. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass:challenges and perspectives[J]. Bioresource Technol., 2010, 101(13):5003-5012.
|
[9] |
ZHAO X, XIONG L, ZHANG M, et al. Towards efficient bioethanol production from agricultural and forestry residues:exploration of unique natural microorganisms in combination with advanced strain engineering[J]. Bioresource Technol., 2016, 215:84-91.
|
[10] |
JAIN V K. Modifying redox potential and its impact on metabolic fluxes in Saccharomyces cerevisiae[D]. Stellenbosch:Stellenbosch University, 2010.
|
[11] |
DE GRAEF M R, ALEXEEVA S, SNOEP J L, et al. The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli[J]. J. Bacteriol., 1999, 181(8):2351-2357.
|
[12] |
LIU C G, LIN Y, BAI F. Global gene expression analysis of Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity conditions[J]. Biotechnol. J., 2013, 8(11):1332-1340.
|
[13] |
GAO J Q, YUAN W J, LI Y M, et al. Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology[J]. Biotechnol. Biofuels, 2015, 8(1):115.
|
[14] |
郝学密, 杜斌, 刘黎阳, 等. ORP对酿酒酵母在木质纤维素水解液抑制物中发酵的影响[J]. 化工学报, 2015, 66(3):1066-1071. HAO X M, DU B, LIU L Y, et al. Effect of ORP regulation on yeast fermentation with inhibitors of lignocellulose hydrolysate[J]. CIESC Journal, 2015, 66(3):1066-1071.
|
[15] |
KO J K, UM Y, HAN M W, et al. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae, harboring xylose isomerase-based pathway[J]. Bioresource Technology, 2016, 209:290-296.
|
[16] |
魏铭, 王彩霞, 邢建民. 高效液相色谱法测定玉米秸秆预处理过程的抑制物[J]. 西南林业大学学报, 2014, 34(6):85-90. WEN M, WANG C X, XING J M. Determination of inhibitors in pretreatment corn straw by using high performance liquid chromatography[J]. Journal of Southwest Forestry University, 2014, 34(6):85-90.
|
[17] |
CHEN S F, MOWERY R A, CASTLEBERRY V A, et al. High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates.[J]. Journal of Chromatography A, 2006, 1104(1):54-61.
|
[18] |
CHUNDAWAT S P S, VISMEH R, SHARMA L N, et al. Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments[J]. Bioresource Technology, 2010, 101(21):8429-8438.
|
[19] |
DU B, SHARMA L N, BECKER C, et al. Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates[J]. Biotechnology & Bioengineering, 2010, 107(3):430-440.
|
[20] |
PALMQVIST E, GRAGE H, MEINANDER N Q, et al. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts[J]. Biotechnology & Bioengineering, 1999, 63(1):46-55.
|
[21] |
SAKAI S, TSUCHIDA Y, NAKAMOTO H, et al. Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R[J]. Applied & Environmental Microbiology, 2007, 73(7):2349-2353.
|
[22] |
CAO G L, REN N Q, WANG A J, et al. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16[J]. International Journal of Hydrogen Energy, 2010, 35(24):13475-134803.
|
[23] |
GAO J Q, YUAN W J, LI Y M, et al. Application of redox potential control to improve ethanol productivity from inulin by consolidated bioprocessing[J]. Process Biochem., 2016, 51(10):1544-1551.
|
[24] |
KIM S Y, KIM J H, OH D K. Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis[J]. Journal of Fermentation & Bioengineering, 1997, 83(3):267-270.
|
[25] |
孜力汗, 刘晨光, 王娜, 等. 多种通气策略下的高浓度乙醇生产[J]. 中国生物工程杂志, 2013, 33(6):86-92. ZI L H, LIU C G, WANG N, et al. Very high gravity ethanol production under different aeration schemes[J]. China Biotechnology, 2013, 33(6):86-92.
|
[26] |
BROWN A D. Microbial water stress[J]. Bacteriological Reviews, 1976, 40(40):803-846.
|
[27] |
HE Y Q, ZHANG J, BAO J. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation[J]. Biotechnol. Biofuels, 2016, 9(1):1-13.
|
[28] |
HASUNUMA T, KONDO A, XU J H, et al. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering[J]. Biotechnol. Adv., 2012, 30(6):1207-1218.
|
[29] |
HASUNUMA T, SANDA T, YAMADA R, et al. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae[J]. Microb. Cell Fact., 2011, 10(1):2-14.
|
[30] |
VAN DER POL E C, BAKKER R R, BAETS P, et al. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels[J]. Appl. Microbiol. Biot., 2014, 98(23):9579-9593.
|