[1] |
YANG X J, HAN Q Y, PANG J W, et al. Progress of heat-hazard treatment in deep mines[J]. Min. Sci. Tech., 2011, 21(2):295-299.
|
[2] |
HE M C. Application of HEMS cooling technology in deep mine heat hazard control[J]. Min. Sci. Tech., 2005, 19(3):269-275.
|
[3] |
DEVOS O, JAKAB S, GABRIELLI C, et al. Nucleation-growth process of scale electro-deposition influence of the magnesium ions[J]. J. Cryst. Growth, 2009, (311):4334-4342.
|
[4] |
徐志明, 张一龙, 刘坐东, 等.松花江水质参数与换热管内污垢热阻的关联分析[J]. 化工学报, 2014, 65(12):4742-4748. XU Z M, ZHANG Y L, LIU Z D, et al.Correlation analysis between Songhua River water quality and fouling resistance in heat exchanger tube[J]. CIESC Journal, 2014, 65(12):4742-4748.
|
[5] |
徐志明, 张一龙, 王景涛, 等. 两种阴离子对析晶污垢沉积的影响[J]. 化工学报, 2015, 66(6):2268-2273. XU Z M, ZHANG Y L, WANG J T, et al. Effect of two kinds of anions on crystallization fouling deposition[J]. CIESC Journal, 2015, 66(6):2268-2273.
|
[6] |
SU M, HAN J, LI Y H, et al. Ultrasonic crystallization of calcium carbonate in presence of seawater ions[J]. Desalination, 2015, (369):85-90.
|
[7] |
KAROUI H, KORCHEF A, TLILI M M, et al. Effects of Mg2+, Ca2+ and SO42- ions on the precipitation kinetics and microstructure of aragonite[J]. Ann. Chim. Sci. Mater., 2008, (33):123-134.
|
[8] |
ZHAO J C, SONG X F, SUN Y Z, et al. Study on crystallization of calcium carbonate from calcium sulfate and ammonium carbonate in the presence of magnesium ions[J]. Cryst. Res. Technol., 2015, 50(4):277-283.
|
[9] |
WALY T, KENNEDY M D, WITKAMP G J, et al. The role of inorganic ions in the calcium carbonate scaling of seawater reverse osmosis systems[J]. Desalination, 2012, (284):279-287.
|
[10] |
AMOR Y B, BOUSSELMI L, TRIBOLLET B, et al. Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior[J]. Electrochimica Acta, 2010, (55):4820-4826.
|
[11] |
王世燕, 袁顺东, 卢贵武. Mg2+影响方解石晶体生长机制的分子动力学研究[J]. 青岛大学学报(自然科学版), 2012, 25(3):41-45. WANG S Y, YUAN S D, LU G W. Molecular dynamics study of influence of on Mg2+ calcite crystal growth[J]. J. Qingdao. Uni. (Natural Science Edition), 2012, 25(3):41-45.
|
[12] |
WADA N, YAMASHITA K, UMEGAKI T. Effects of silver, aluminum, and chrome ions on the polymorphic formation of calcium carbonate under conditions of double diffusion[J]. J. Colloid.Interf., 1998, (201):1-6.
|
[13] |
LEEUW N H D. Molecular dynamics simulations of the growth inhibiting effect of Fe2+, Mg2+, Cd2+, and Sr2+ on calcite crystal growth[J]. J. Chem. Phys. B, 2002, (106):5241-5249.
|
[14] |
CLIFFORD Y T, CHEN F B. Polymorphism of CaCO3 precipitated in a constant-composition environment[J]. AlChE Journal, 1998, (44):1791-1798.
|
[15] |
AMOR Y B, BOUSSELMI L, BERNARD M C, et al. Nucleation-growth process of calcium carbonate electrodeposition in artificial water-influence of the sulfate ions[J]. J. Cryst. Growth, 2011, (320):69-77.
|
[16] |
江绍静, 余华贵, 刘春燕. 高矿化度体系碳酸钙结垢动力学研究[J].应用化工, 2011,40(9):1623-1628. JIANG S J, YU H G, LIU C Y. Research on the scaling dynamic model of the high salinity system[J]. App. Chem. Indus., 2011, 40(9):1623-1628.
|
[17] |
TANG Y M, ZHANG F, CAO Z Y, et al. Crystallization of CaCO3 in the presence of sulfate and additives:experimental and molecular dynamics simulation studies[J]. J. Colloid. Interf., 2012, (377):430-437.
|
[18] |
KETRANE R, LELEYTER L, BARAUD F, et al. Characterization of natural scale deposits formed in southern Algeria groundwater:effect of its major ions on calcium carbonate precipitation[J]. Desalination, 2010, (262):21-30.
|
[19] |
HASSON D, AVRIEL M, RESNICK W, et al. Calcium carbonate scale deposition on heat transfer surface[J]. Desalination, 1968, (5):107-119.
|
[20] |
KRESSE G, JOUBERT D. From ultra soft pseudo potentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, (59):1758-1765.
|
[21] |
PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B, 1992, (45):13244.
|
[22] |
KOHLHAAS R, D?NNER P, SCHMITZ N, et al. The temperature dependence of the lattice parameters of iron, cobalt, and nickel in the high temperature range[J]. Z Angew Phys., 1967, 23(4):245-249.
|
[23] |
SORESCU D C. Adsorption and activation of CO coadsorbed with K on Fe (100) surface:a plane-wave DFT study[J]. Surf. Sci., 2011, (605):401-410.
|
[24] |
MICHAELIDES A. Density functional theory simulations of water-metal interfaces:waltzing waters, a novel 2D ice phase, and more[J]. Appl. Phys. A, 2006, (85):4152006.
|
[25] |
SCHIROS T, HAP S, OGASAWARA H, et al. Structure of water adsorbed on the open Cu(110) surface:H-up, H-down, or both[J]. Chem. Phys. Lett., 2006, (429):415-423.
|
[26] |
TAYLOR C D, WASILESKI S A, FILHOL J S, et al. First principles reaction modeling of the electrochemical interface:consideration and calculation of a tunable surface potential from atomic and electronic structure[J]. Phys. Rev. B, 2006, (73):165402.
|
[27] |
MENZEL D. Water on a metal surface[J]. Science, 2002, (295):58-63.
|